Metabolomics Analyses of Saliva Detect Novel Biomarkers of Alzheimer's Disease

J Alzheimers Dis. 2018;65(4):1401-1416. doi: 10.3233/JAD-180711.


Using a non-invasive biofluid (saliva), we apply a powerful metabolomics workflow for unbiased biomarker discovery in Alzheimer's disease (AD). We profile and differentiate Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and AD groups. The workflow involves differential chemical isotope labeling liquid chromatography mass spectrometry using dansylation derivatization for in-depth profiling of the amine/phenol submetabolome. The total sample (N = 109) was divided in to the Discovery Phase (DP) (n = 82; 35 CN, 25 MCI, 22 AD) and a provisional Validation Phase (VP) (n = 27; 10 CN, 10 MCI, 7 AD). In DP we detected 6,230 metabolites. Pairwise analyses confirmed biomarkers for AD versus CN (63), AD versus MCI (47), and MCI versus CN (2). We then determined the top discriminating biomarkers and diagnostic panels. A 3-metabolite panel distinguished AD from CN and MCI (DP and VP: Area Under the Curve [AUC] = 1.000). The MCI and CN groups were best discriminated with a 2-metabolite panel (DP: AUC = 0.779; VP: AUC = 0.889). In addition, using positively confirmed metabolites, we were able to distinguish AD from CN and MCI with good diagnostic performance (AUC > 0.8). Saliva is a promising biofluid for both unbiased and targeted AD biomarker discovery and mechanism detection. Given its wide availability and convenient accessibility, saliva is a biofluid that can promote diversification of global AD biomarker research.

Keywords: Alzheimer’s disease; Victoria Longitudinal Study; biomarkers; liquid chromatography mass spectrometry; metabolomics; saliva.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Alzheimer Disease / metabolism*
  • Biomarkers / metabolism*
  • Chromatography, Liquid
  • Cognitive Dysfunction / metabolism
  • Female
  • Humans
  • Independent Living
  • Longitudinal Studies
  • Male
  • Metabolomics / methods*
  • Reproducibility of Results
  • Saliva / metabolism*


  • Biomarkers