Ragulator and SLC38A9 activate the Rag GTPases through noncanonical GEF mechanisms

Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9545-9550. doi: 10.1073/pnas.1811727115. Epub 2018 Sep 4.

Abstract

The mechanistic target of rapamycin complex 1 (mTORC1) growth pathway detects nutrients through a variety of sensors and regulators that converge on the Rag GTPases, which form heterodimers consisting of RagA or RagB tightly bound to RagC or RagD and control the subcellular localization of mTORC1. The Rag heterodimer uses a unique "locking" mechanism to stabilize its active (GTPRagA-RagCGDP) or inactive (GDPRagA-RagCGTP) nucleotide states. The Ragulator complex tethers the Rag heterodimer to the lysosomal surface, and the SLC38A9 transmembrane protein is a lysosomal arginine sensor that upon activation stimulates mTORC1 activity through the Rag GTPases. How Ragulator and SLC38A9 control the nucleotide loading state of the Rag GTPases remains incompletely understood. Here we find that Ragulator and SLC38A9 are each unique guanine exchange factors (GEFs) that collectively push the Rag GTPases toward the active state. Ragulator triggers GTP release from RagC, thus resolving the locked inactivated state of the Rag GTPases. Upon arginine binding, SLC38A9 converts RagA from the GDP- to the GTP-loaded state, and therefore activates the Rag GTPase heterodimer. Altogether, Ragulator and SLC38A9 act on the Rag GTPases to activate the mTORC1 pathway in response to nutrient sufficiency.

Keywords: Rag GTPases; Ragulator; SLC38A9; guanine exchange factor; mTORC1.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Transport Systems / metabolism*
  • Energy Metabolism / physiology
  • Guanine Nucleotide Exchange Factors / metabolism*
  • HEK293 Cells
  • Humans
  • Intracellular Membranes / metabolism
  • Lysosomes / metabolism
  • Mechanistic Target of Rapamycin Complex 1 / metabolism*
  • Monomeric GTP-Binding Proteins / metabolism*
  • Phosphorylation / physiology
  • Protein Binding / physiology
  • Protein Multimerization / physiology
  • Recombinant Proteins / metabolism
  • Signal Transduction / physiology*

Substances

  • Amino Acid Transport Systems
  • Guanine Nucleotide Exchange Factors
  • Recombinant Proteins
  • SLC38A9 protein, human
  • Mechanistic Target of Rapamycin Complex 1
  • Monomeric GTP-Binding Proteins