Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Aug 24:8:30.
doi: 10.4103/jcis.JCIS_16_18. eCollection 2018.

The Use of Imaging in Management of Patients with Low Back Pain

Affiliations
Review

The Use of Imaging in Management of Patients with Low Back Pain

Dinesh Rao et al. J Clin Imaging Sci. .

Abstract

Lower back pain (LBP) is one of the most common chief complaints encountered in primary care. Advanced imaging studies, including computerized tomography (CT) and magnetic resonance imaging (MRI), are frequently ordered in the setting of LBP. Structural abnormalities are commonly identified by CT and MRI in patients complaining of low back pain, however, these findings are also found in asymptomatic patients. In the past decade, multiple guidelines have been published to help providers identify patients in whom the use of advanced imaging is appropriate. In this article, we review common conditions associated with LBP that require advanced imaging along with their clinical and associated imaging findings.

Keywords: Computerized tomography; low back pain; magnetic resonance imaging.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts of interest.

Figures

Figure 1
Figure 1
A 45-year-old male who presented with low back pain radiating to the lower extremity. Sagittal T2-weighted magnetic resonance imaging of the lumbar spine demonstrates a disk herniation arising from the L3-4 level with cephalad migration posterior to the L3 vertebral body (white arrow).
Figure 2
Figure 2
(a) A 25-year-old male complained of worsening L1 distribution radiculopathy symptoms 1 day after microdiskectomy. Axial T1 fat saturated image of the lumbar spine with contrast demonstrates homogenously enhancing tissue in the right subarticular recess (white bracket) which represents granulation tissue. The traversing right S1 nerve root (white arrow) is enhancing and was likely injured during surgery. (b) A 32-year-old male complained of worsening right lower extremity radiculopathy symptoms for one year after previous microdiskectomy for similar radicular symptoms. A Sagittal T1 fat saturated image of the lumbar spine with contrast demonstrates a residual/recurrent disk herniation at the L5-S1 level (white arrow) resulting in residual lumbosacral radiculopathy symptoms. The disk herniation was confirmed during repeat surgery.
Figure 3
Figure 3
A 43-year-old woman complained of progressive chronic low back pain which worsened when walking short distances. A sagittal T2-weighted image of the lumbar spine demonstrates a disk herniation at L2-3 (white arrow) resulting in severe spinal canal stenosis.
Figure 4
Figure 4
A 24-year-old male presented with bilateral lower extremity paralysis and loss of sensation after a motor vehicle collision. A sagittal T2-weighted image demonstrates traumatic retrolisthesis of L1 on L2 (white bracket) resulting in severe canal stenosis. Note the hyperintense T2 signal in the spinal cord which represents a spinal cord infarction (black arrow).
Figure 5
Figure 5
(a) A 42-year-old male with a history of intravenous drug use presented with fever and low back pain. A sagittal short tau inversion recovery magnetic resonance imaging of the lumbar spine demonstrates edema-like signal in the L1 and L2 vertebral bodies with fluid signal within the intervertebral disk space and endplate destruction (thin arrow). Note the paraspinal phlegmon (thick white arrow). (b) A 43-year-old female presented with fever, severe low back pain, and bilateral lower extremity weakness. Axial T1 fat, saturated magnetic resonance imaging with gadolinium of the lumbar spine demonstrates a paraspanal abscess (thin white arrow) as well as epidural phlegmon and abscess (short, thick white arrow) in the lumbar spine.
Figure 6
Figure 6
A 50-year-old male presented with chronic low back pain. Modic Type 1 endplate changes characterized by hyperintense signal (white arrow) on a sagittal short tau inversion recovery image of the lumbar spine.
Figure 7
Figure 7
A 30-year-old male presented with fever, night sweats, weight loss, and severe low back pain. A fat, saturated T1 enhanced magnetic resonance imaging of the lumbar spine demonstrates enhancement of the L4 and L5 endplates (white bracket) with subligamentous enhancement posteriorly (white arrow). There is also enhancement of the L3 inferior endplate. Biopsy cultures revealed atypical mycobacterial infection.
Figure 8
Figure 8
A 59-year-old male presented with progressive bilateral lower extremity weakness, cough, and malaise Sagittal T1 fat, saturated magnetic resonance imaging of the lumbar spine demonstrates thin micronodular enhancement of the surface of the spinal cord. Further patient workup revealed metastatic lung cancer.
Figure 9
Figure 9
A 68-year-old male presented with severe low back pain and altered bilateral lower extremity sensation after falling down. He was taking Plavix for a coronary stent. A sagittal T1 weighted magnetic resonance imaging of the lumbar spine demonstrates an anterior epidural hematoma from T12 through L5 (black arrow).
Figure 10
Figure 10
A 53-year-old male presented with severe low back pain. He was taking oral steroids. He denied trauma. An unenhanced sagittal computerized tomography image of the lumbar spine demonstrates a compression fracture of the L5 vertebral body with vertebra plana and retropulsion of bone into the spinal canal (white arrow).
Figure 11
Figure 11
A 28-year-old male was imaged because of progressive worsening low back pain. A Sagittal short tau inversion recovery magnetic resonance imaging of the lumbar spine demonstrates Romanus lesions, also known as “shiny corners” at the anterior superior endplates of L3 and L4 (white arrows). Further workup revealed a diagnosis of ankylosing spondylitis.

Similar articles

Cited by

References

    1. Murray CJ, Lopez AD. Measuring the global burden of disease. N Engl J Med. 2013;369:448–57. - PubMed
    1. Deyo RA, Cherkin D, Conrad D, Volinn E. Cost, controversy, crisis: Low back pain and the health of the public. Annu Rev Public Health. 1991;12:141–56. - PubMed
    1. Schwartz AL, Landon BE, Elshaug AG, Chernew ME, McWilliams JM. Measuring low-value care in medicare. JAMA Intern Med. 2014;174:1067–76. - PMC - PubMed
    1. Swedlow A, Johnson G, Smithline N, Milstein A. Increased costs and rates of use in the California workers' compensation system as a result of self-referral by physicians. N Engl J Med. 1992;327:1502–6. - PubMed
    1. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36:811–6. - PMC - PubMed