The eye lens has an active ubiquitin-protein conjugation system

J Biol Chem. 1986 Oct 15;261(29):13760-7.


Using exogenous 125I-ubiquitin, ubiquitin-lens protein conjugation was observed with supernatants of cultured rabbit lens epithelial cells and lens cortex tissue. Conjugation was ATP-dependent with the greatest variety and amount of conjugates larger than 150 kDa. In vivo production of ubiquitin-protein conjugates in cultured rabbit and beef lens epithelial cells and rabbit lens tissues of different developmental age was established using immunological detection. There were limited similarities between conjugates found in youngest as opposed to oldest tissue. Cultured rabbit cells contained 27 pmol/mg free ubiquitin and 18 pmol/mg conjugated ubiquitin. Levels of free ubiquitin in lens tissue epithelium, cortex, and core were 36, 5, and 5 pmol/mg, respectively. There were only 2 pmol/mg conjugated ubiquitin in each of these tissues. Hydrolysis of 125I-ubiquitin was catalyzed by supernatants of cultured lens cells, beef and human lens tissues, and reticulocytes. Degradation was greatest in epithelial tissues, and least in core. This corroborates studies which show that proteolytic capabilities are attenuated in older tissue. Decreased initiation of proteolysis by ubiquitination as well as diminished proteolysis in older lens tissue may be related to the accumulation of damaged proteins in aging lens tissue.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Cells, Cultured
  • Crystallins / metabolism*
  • Epithelium / metabolism
  • Iodine Radioisotopes
  • Kinetics
  • Lens, Crystalline / metabolism*
  • Molecular Weight
  • Protein Binding
  • Rabbits
  • Ubiquitins / metabolism*


  • Crystallins
  • Iodine Radioisotopes
  • Ubiquitins
  • Adenosine Triphosphate