Self-similarity and multifractality in human brain activity: A wavelet-based analysis of scale-free brain dynamics

J Neurosci Methods. 2018 Nov 1:309:175-187. doi: 10.1016/j.jneumeth.2018.09.010. Epub 2018 Sep 10.

Abstract

Background: The temporal structure of macroscopic brain activity displays both oscillatory and scale-free dynamics. While the functional relevance of neural oscillations has been largely investigated, both the nature and the role of scale-free dynamics in brain processing have been disputed.

New method: Here, we offer a novel method to rigorously enrich the characterization of scale-free brain activity using a robust wavelet-based assessment of self-similarity and multifractality. For this, we analyzed human brain activity recorded with magnetoencephalography (MEG) while participants were at rest or performing a visual motion discrimination task.

Results: First, we report consistent infraslow (from 0.1 to 1.5 Hz) scale-free dynamics (i.e., self-similarity and multifractality) in resting-state and task data. Second, we observed a fronto-occipital gradient of self-similarity reminiscent of the known hierarchy of temporal scales from sensory to higher-order cortices; the anatomical gradient was more pronounced in task than in rest. Third, we observed a significant increase of multifractality during task as compared to rest. Additionally, the decrease in self-similarity and the increase in multifractality from rest to task were negatively correlated in regions involved in the task, suggesting a shift from structured global temporal dynamics in resting-state to locally bursty and non Gaussian scale-free structures during task.

Comparison with existing method(s): We showed that the wavelet leader based multifractal approach extends power spectrum estimation methods in the way of characterizing finely scale-free brain dynamics.

Conclusions: Altogether, our approach provides novel fine-grained characterizations of scale-free dynamics in human brain activity.

Keywords: 1/f power spectrum; Fractal; Infra-slow activity; MEG; Multifractal; Oscillations; Resting-state; Temporal structure; Wavelet.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain / physiology*
  • Brain Mapping / methods*
  • Discrimination, Psychological / physiology
  • Female
  • Humans
  • Image Processing, Computer-Assisted
  • Magnetoencephalography / methods*
  • Male
  • Motion Perception / physiology
  • Wavelet Analysis*
  • Young Adult