Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration
- PMID: 30215524
- PMCID: PMC6462413
- DOI: 10.1021/jacs.8b08879
Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration
Abstract
Surface capture assays can measure fluorescently labeled analytes across a 1000-fold concentration range and at the sub-nanomolar level, but many biological molecules exhibit 1,000,000-fold variations in abundance down to the femtomolar level. The goal of this work is to expand the dynamic range of fluorescence assays by using imaging to combine molecular counting with single-molecule calibration of ensemble intensities. We evaluate optical limits imposed by surface-captured fluorescent labels, compare performances of different fluorophore classes, and use detector acquisition parameters to span wide ranges of fluorescence irradiance. We find that the fluorescent protein phycoerythrin provides uniquely suitable properties with exceptionally intense and homogeneous single-fluorophore brightness that can overcome arbitrary spot detection threshold biases. Major limitations imposed by nonspecifically bound fluorophores were then overcome using rolling circle amplification to densely label cancer-associated miRNA biomarkers, allowing accurate single-molecule detection and calibration across nearly 5 orders of magnitude of concentration with a detection limit of 29 fM. These imaging and molecular counting strategies can be widely applied to expand the limit of detection and dynamic range of a variety of surface fluorescence assays.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
Similar articles
-
Direct Kinetic Fingerprinting for High-Accuracy Single-Molecule Counting of Diverse Disease Biomarkers.Acc Chem Res. 2021 Jan 19;54(2):388-402. doi: 10.1021/acs.accounts.0c00621. Epub 2020 Dec 31. Acc Chem Res. 2021. PMID: 33382587 Free PMC article.
-
Single-molecule fluorescence detection: autocorrelation criterion and experimental realization with phycoerythrin.Proc Natl Acad Sci U S A. 1989 Jun;86(11):4087-91. doi: 10.1073/pnas.86.11.4087. Proc Natl Acad Sci U S A. 1989. PMID: 2726766 Free PMC article.
-
Fluorescent Biosensors Based on Single-Molecule Counting.Acc Chem Res. 2016 Sep 20;49(9):1722-30. doi: 10.1021/acs.accounts.6b00237. Epub 2016 Sep 1. Acc Chem Res. 2016. PMID: 27583695 Review.
-
Label-free fluorescence strategy for sensitive microRNA detection based on isothermal exponential amplification and graphene oxide.Talanta. 2016;148:116-21. doi: 10.1016/j.talanta.2015.10.078. Epub 2015 Oct 27. Talanta. 2016. PMID: 26653431
-
Optically modulated fluorescence bioimaging: visualizing obscured fluorophores in high background.Acc Chem Res. 2014 May 20;47(5):1545-54. doi: 10.1021/ar400325y. Epub 2014 Apr 14. Acc Chem Res. 2014. PMID: 24725021 Free PMC article. Review.
Cited by
-
Digital and Absolute Assays for Low Abundance Molecular Biomarkers.Acc Chem Res. 2023 May 2;56(9):1031-1042. doi: 10.1021/acs.accounts.3c00030. Epub 2023 Apr 17. Acc Chem Res. 2023. PMID: 37068158
-
Evaluation of probe-based ultra-sensitive detection of miRNA using a single-molecule fluorescence imaging method: miR-126 used as the model.Front Bioeng Biotechnol. 2023 Jan 24;11:1081488. doi: 10.3389/fbioe.2023.1081488. eCollection 2023. Front Bioeng Biotechnol. 2023. PMID: 36761298 Free PMC article.
-
CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging.Chem Sci. 2022 Sep 10;13(38):11433-11441. doi: 10.1039/d2sc03329a. eCollection 2022 Oct 5. Chem Sci. 2022. PMID: 36320584 Free PMC article.
-
A Fast and Easy Probe Based on CMC/Eu (Ⅲ) Nanocomposites to Detect Acrylamide in Different Food Simulants Migrating from Food-Contacting Paper Materials.Polymers (Basel). 2022 Aug 30;14(17):3578. doi: 10.3390/polym14173578. Polymers (Basel). 2022. PMID: 36080657 Free PMC article.
-
Photonic crystal enhanced fluorescence emission and blinking suppression for single quantum dot digital resolution biosensing.Nat Commun. 2022 Aug 8;13(1):4647. doi: 10.1038/s41467-022-32387-w. Nat Commun. 2022. PMID: 35941132 Free PMC article.
References
-
- Lakowicz JR Principles of Fluorescence Spectroscopy, 3rd ed.; Springer, 2006.
-
- Stockert JC; Blazquez-Castro A Flourescence Microscopy in Life Sciences; Bentham Science Publishers, 2017.
-
- Frgala T; Kalous O; Proffitt RT; Reynolds CP Mol. Cancer Ther 2007, 6, 886. - PubMed
-
- Jiang L; Yu Z; Du W; Tang Z; Jiang T; Zhang C; Lu Z Biosens. Bioelectron 2008, 24, 376. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
