Functional monoamine oxidase B gene intron 13 polymorphism predicts putaminal dopamine turnover in de novo Parkinson's disease

Mov Disord. 2018 Sep;33(9):1496-1501. doi: 10.1002/mds.27466. Epub 2018 Sep 14.


Objective: The objective of this study was to evaluate the effects of common functional polymorphisms in genes involved in dopamine metabolism on striatal dopamine turnover in de novo Parkinson's disease (PD).

Methods: This was an observer-blinded cohort study investigating effects of common functional polymorphisms in dopa decarboxylase (DDC, rs921451), monoamine oxidase B (MAOB; rs1799836), catechol-O-methyltransferase (COMT, rs4680), and dopamine transporter/solute carrier family 6 member 3 (DAT/SLC6A3, variable number tandem repeats) genes on 18 F-fluorodopa uptake and an effective distribution volume ratio (inverse of dopamine turnover) measured by 18 F-fluorodopa PET in 28 untreated PD patients.

Results: Patients carrying the MAOBCC/(C)/CT genotype (low/intermediate enzyme activity) had a lower dopamine turnover in the putamen (higher mean effective distribution volume ratio) when compared with patients with MAOBTT/(T) genotype (high enzyme activity). Striatal PET measures were not different between variants in the remaining genes.

Conclusions: The MAOB (rs1799836) polymorphism predicts putaminal dopamine turnover in early PD with the MAOBTT allele linked to high enzyme activity leading to higher intrinsic dopamine turnover, which has been demonstrated to constitute a risk factor for motor complications. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.

Keywords: Parkinson's disease; dopamine metabolism; dopamine turnover; functional gene polymorphisms; monoamine oxidase B (MAOB); positron emission tomography (PET).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Analysis of Variance
  • Catechol O-Methyltransferase
  • Cohort Studies
  • Dopamine / metabolism*
  • Dopamine Plasma Membrane Transport Proteins
  • Female
  • Fluorodeoxyglucose F18 / metabolism
  • Genotype
  • Humans
  • Introns / genetics
  • Male
  • Middle Aged
  • Monoamine Oxidase / genetics*
  • Parkinson Disease / diagnostic imaging
  • Parkinson Disease / genetics*
  • Parkinson Disease / metabolism
  • Parkinson Disease / pathology*
  • Polymorphism, Genetic / genetics*
  • Positron-Emission Tomography
  • Putamen / diagnostic imaging
  • Putamen / metabolism*
  • Single-Blind Method


  • Dopamine Plasma Membrane Transport Proteins
  • SLC6A3 protein, human
  • Fluorodeoxyglucose F18
  • Monoamine Oxidase
  • Catechol O-Methyltransferase
  • Dopamine