Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging

Annu Rev Physiol. 2019 Feb 10:81:19-41. doi: 10.1146/annurev-physiol-020518-114310. Epub 2018 Sep 14.

Abstract

Mitochondria are critical organelles responsible for regulating the metabolic status of skeletal muscle. These organelles exhibit remarkable plasticity by adapting their volume, structure, and function in response to chronic exercise, disuse, aging, and disease. A single bout of exercise initiates signaling to provoke increases in mitochondrial biogenesis, balanced by the onset of organelle turnover carried out by the mitophagy pathway. This accelerated turnover ensures the presence of a high functioning network of mitochondria designed for optimal ATP supply, with the consequence of favoring lipid metabolism, maintaining muscle mass, and reducing apoptotic susceptibility over the longer term. Conversely, aging and disuse are associated with reductions in muscle mass that are in part attributable to dysregulation of the mitochondrial network and impaired mitochondrial function. Therefore, exercise represents a viable, nonpharmaceutical therapy with the potential to reverse and enhance the impaired mitochondrial function observed with aging and chronic muscle disuse.

Keywords: adaptation; aging; gene expression; mitochondrial biogenesis; mitophagy; skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Aging / physiology*
  • Animals
  • Exercise / physiology*
  • Humans
  • Mitochondria / physiology*
  • Mitochondria, Muscle / physiology*
  • Muscle, Skeletal / physiology*
  • Physical Conditioning, Animal / physiology*
  • Signal Transduction / physiology