Effect of Piperine on Skin Permeation of Curcumin from a Bacterially Derived Cellulose-Composite Double-Layer Membrane for Transdermal Curcumin Delivery

Sci Pharm. 2018 Sep 13;86(3):E39. doi: 10.3390/scipharm86030039.


Curcumin is a naturally occurring substance with various pharmacological activities. It has not been developed as a drug because of its low bioavailability due to its low solubility and absorption. Piperine is a natural enhancer that is popularly used to increase the absorption of curcumin in oral applications; however, it has not been applied for transdermal curcumin delivery. This study aims to develop a transdermal curcumin delivery system using piperine as a skin permeation enhancer in the form of composite double-layer membrane; the upper layer consisted of curcumin and the lower layer consisted of piperine. The amount of curcumin was fixed, but the amount of piperine varied at three levels from 1.96% to 7.41%. The composite membrane had moderate mechanical strength (15⁻22 MPa) with a good swelling degree (~435%). From an in vitro skin permeation study, piperine had the effect to increase the permeation of curcumin. The permeation rate was related to the amount of piperine. The composite membrane containing piperine at 7.41% could increase the permeation rate of curcumin by about 1.89 times compared with non-piperine contained membrane. Bacterially-derived cellulose containing curcumin and piperine may have the potential for transdermal curcumin delivery in order to improve curcumin's bioavailability.

Keywords: bacterially derived cellulose; bioenhancer; curcumin; piperine; transdermal drug delivery.