Within-colony genetic diversity differentially affects foraging, nest maintenance, and aggression in two species of harvester ants

Sci Rep. 2018 Sep 14;8(1):13868. doi: 10.1038/s41598-018-32064-3.

Abstract

There is accumulating evidence that genetic diversity improves the behavioral performance and consequently the fitness in groups of social animals. We examined the behavioral performance of colonies of two co-occurring, congeneric harvester ant species (Messor arenarius and a non-described Messor sp.) in fitness-related behaviors, pertaining to foraging performance, nest maintenance, and aggression. We linked these behaviors to the colonial genetic diversity, by genotyping workers, using six and five microsatellite markers for M. arenarius and M. sp., respectively. Correlations of genetic diversity with colony performance and aggression level contrasted between the two species. In M. arenarius, genetic diversity was correlated with foraging performance and nest maintenance but not with the overall aggression level, while in M. sp., genetic diversity was correlated with the overall aggression level, but not with foraging performance or nest maintenance. The two species exhibited similar specific aggression levels, with higher aggression shown towards heterospecifics and lower towards non-nestmate conspecifics and nestmates. However, M. sp. workers displayed a tendency to interact for longer with heterospecifics than did M. arenarius. We speculate that the different foraging strategies, group vs. individual foraging, and possibly also the different mating systems, contribute to the differences found in behavior between the two species.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aggression*
  • Animals
  • Ants / anatomy & histology
  • Ants / genetics*
  • Body Size / genetics
  • Genetic Variation*
  • Nesting Behavior*
  • Phylogeny