Targeting the MIF/CXCR7/AKT Signaling Pathway in Castration-Resistant Prostate Cancer

Mol Cancer Res. 2019 Jan;17(1):263-276. doi: 10.1158/1541-7786.MCR-18-0412. Epub 2018 Sep 17.


Although androgen deprivation therapy (ADT) is an effective treatment for metastatic prostate cancer, incurable castration-resistant prostate cancer (CRPC) inevitably develops. Importantly, androgen receptor (AR) continues to be critical for prostate cancer growth and progression after ADT. One of the underlying molecular mechanisms is derepression of AR-repressed genes involved in cell cycle and proliferation after ADT. Here, the data demonstrate that C-X-C chemokine receptor type 7 (CXCR7), a seven-transmembrane G-protein-coupled chemokine receptor, is an AR-repressed gene and is upregulated after ADT. AR directly regulates CXCR7 using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) gene editing. Macrophage migration inhibitory factor (MIF) was identified as a ligand for CXCR7, which induces expression of cell-cycle genes through activating AKT signaling pathway. Previous studies have been focused on chemokine CXCL12 and its receptor CXCR4 in mediating metastasis of various cancer types, including prostate cancer. The critical roles of CXCL12/CXCR4 axis in the interaction between cancer cells and their microenvironment render it a promising therapeutic target in cancer treatment. The data suggest that the MIF/CXCR7/AKT pathway drives CRPC growth and metastasis independent of the CXCL12/CXCR4 axis. Furthermore, CXCR7 blockade in combination with anti-androgen enzalutamide inhibits CRPC tumor growth and potentially prevents metastasis. Notably, both MIF and CXCR7 are overexpressed in CRPC patient specimens and therefore are attractive therapeutic targets for these patients. IMPLICATIONS: This work suggests that CXCR7 plays more important roles than CXCR4 in CRPC progression; thus, targeting CXCR7 in combination with anti-androgen is a promising therapeutic approach for metastatic CRPC.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Combined Chemotherapy Protocols / pharmacology*
  • Benzamides
  • Cell Line, Tumor
  • Humans
  • Intramolecular Oxidoreductases / metabolism*
  • Macrophage Migration-Inhibitory Factors / metabolism*
  • Male
  • Mice
  • Mice, Inbred ICR
  • Mice, SCID
  • Molecular Targeted Therapy
  • Nitriles
  • PC-3 Cells
  • Phenylthiohydantoin / administration & dosage
  • Phenylthiohydantoin / analogs & derivatives*
  • Phenylthiohydantoin / pharmacology
  • Prostatic Neoplasms, Castration-Resistant / drug therapy*
  • Prostatic Neoplasms, Castration-Resistant / metabolism*
  • Prostatic Neoplasms, Castration-Resistant / pathology
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Random Allocation
  • Receptors, Androgen / genetics
  • Receptors, Androgen / metabolism
  • Receptors, CXCR / antagonists & inhibitors*
  • Receptors, CXCR / genetics
  • Receptors, CXCR / metabolism
  • Signal Transduction
  • Transfection
  • Xenograft Model Antitumor Assays


  • ACKR3 protein, human
  • AR protein, human
  • Benzamides
  • Macrophage Migration-Inhibitory Factors
  • Nitriles
  • Receptors, Androgen
  • Receptors, CXCR
  • Phenylthiohydantoin
  • enzalutamide
  • Proto-Oncogene Proteins c-akt
  • Intramolecular Oxidoreductases
  • MIF protein, human