A Novel Experimental Dental Implant Permits Quantitative Grading of Surface-Property Effects on Osseointegration

Int J Oral Maxillofac Implants. Sep/Oct 2018;33(5):967-978. doi: 10.11607/jomi.6348.

Abstract

Purpose: To test the hypothesis if a novel single-chamber experimental dental implant allows in vivo the quantitative assessment of osseointegration over time and as a function of different surface properties (physical, chemical, geometric, biologic [osteoconductive or osteoinductive]) in a biologically unfavorable environment (local osteoporosis).

Materials and methods: Three prototypes of a novel experimental implant with different chamber sizes (small, medium, and large) were compared with each other to find out the minimum size of bone chambers needed to allow a discriminative quantification of osseointegration over time. For the comparison of low and high surface osteoconductivity properties, conventional sandblasted, acid-etched chamber surfaces (low surface osteoconductivity) were compared with biomimetically (calcium phosphate) coated ones (high surface osteoconductivity). The implants (4 implants per animal; 88 implants per time point) were inserted into the edentulous maxillae of a total of 66 adult goats with a physiologically osteoporotic masticatory apparatus. Two, 4, and 8 weeks later, they were excised and prepared for a histomorphometric analysis of the volume of neoformed bone within the chamber space and of the bone-to-implant contact (BIC) area.

Results: The implants with small chambers did not show significant differences in bone coverage (BIC) nor bone volume (relative and absolute volume), neither as a function of time nor as of implant surface property (low versus high surface osteoconductivity). However, medium and large chambers revealed significant differences respecting both of these parameters over the 8-week postoperative time period.

Conclusion: The new implant model permits a discriminative quantification of osseointegration in vivo in an osteoporotic bone environment for implants with medium-sized and large-sized chambers. Quantitative assessment of osseointegration is possible, both over time and as a function of low and high surface osteoconductivity properties.

MeSH terms

  • Animals
  • Bone Regeneration
  • Calcium Phosphates / chemistry
  • Coated Materials, Biocompatible / chemistry
  • Dental Implantation, Endosseous
  • Dental Implants*
  • Dental Prosthesis Design
  • Goats
  • Implants, Experimental*
  • Jaw, Edentulous / surgery
  • Osseointegration / physiology*
  • Surface Properties
  • Titanium / chemistry

Substances

  • Calcium Phosphates
  • Coated Materials, Biocompatible
  • Dental Implants
  • calcium phosphate
  • Titanium
  • tricalcium phosphate