Modeling Neural Adaptation in Auditory Cortex

Front Neural Circuits. 2018 Sep 5:12:72. doi: 10.3389/fncir.2018.00072. eCollection 2018.

Abstract

Neural responses recorded from auditory cortex exhibit adaptation, a stimulus-specific decrease that occurs when the same sound is presented repeatedly. Stimulus-specific adaptation is thought to facilitate perception in noisy environments. Although adaptation is assumed to arise independently from cortex, this has been difficult to validate directly in vivo. In this study, we used a neural network model of auditory cortex with multicompartmental cell modeling to investigate cortical adaptation. We found that repetitive, non-adapted inputs to layer IV neurons in the model elicited frequency-specific decreases in simulated single neuron, population-level and local field potential (LFP) activity, consistent with stimulus-specific cortical adaptation. Simulated recordings of LFPs, generated solely by excitatory post-synaptic inputs and recorded from layers II/III in the model, showed similar waveform morphologies and stimulus probability effects as auditory evoked responses recorded from human cortex. We tested two proposed mechanisms of cortical adaptation, neural fatigue and neural sharpening, by varying the strength and type of inter- and intra-layer synaptic connections (excitatory, inhibitory). Model simulations showed that synaptic depression modeled in excitatory (AMPA) synapses was sufficient to elicit a reduction in neural firing rate, consistent with neural fatigue. However, introduction of lateral inhibition from local layer II/III interneurons resulted in a reduction in the number of responding neurons, but not their firing rates, consistent with neural sharpening. These modeling results demonstrate that adaptation can arise from multiple neural mechanisms in auditory cortex.

Keywords: ECoG; adaptation; auditory cortex; auditory evoked responses; computational modeling; local field potentials; neural network; repetition suppression.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Acoustic Stimulation / methods
  • Adaptation, Physiological / physiology*
  • Auditory Cortex / physiology*
  • Electrocorticography / methods*
  • Evoked Potentials, Auditory / physiology*
  • Humans
  • Male
  • Neural Networks, Computer*