Generation of induced pluripotent stem cell line (ZZUi007-A) from a 52-year-old patient with a novel CHCHD2 gene mutation in Parkinson's disease

Stem Cell Res. 2018 Oct:32:87-90. doi: 10.1016/j.scr.2018.08.011. Epub 2018 Aug 23.

Abstract

CHCHD2 mutation has been reported as a potential cause of a rare form of familial Parkinson's disease. Recently, a novel CHCHD2 mutation was identified in a family with Parkinson's disease. The dermal fibroblasts of the patient were obtained and successfully transformed into induced pluripotent stem cells(iPSCs), employing episomal plasmids expressing OCT3/4, SOX2, KLF4, LIN28, and L-MYC. Our model may offer a good platform for further research on the pathomechanism, drug testing, and gene therapy of this disease. RESOURCE TABLE: RESOURCE UTILITY: CHCHD2 mutation has been shown to be associated with Parkinson's disease (PD) (Shi et al., 2016). Induced pluripotent stem cells (iPSCs), generated from a patient harboring a CHCHD2 mutation, may provide an ideal cell model for exploring the pathogenesis of this disease and aid in drug screening. RESOURCE DETAILS: Parkinson's disease (PD) is one of the most common neurodegenerative disorders, characterized by resting tremors, muscular rigidity, bradykinesia, and postural instability. Previous studies have revealed that parkinsonism can be caused by mutations in several genes including parkin, PTEN-induced putative kinase protein 1 (PINK1), parkinsonism-associated deglycase (DJ1), and ATPase 13A2 (ATP13A2) (Bonifati, 2014). In this study, a novel CHCHD2 mutation was identified in a family with Parkinson's disease (Shi et al., 2016), and the fibroblasts of the patient were successfully transformed into iPSCs. Episomal plasmids were used to generate the ZZUi007-A iPSC line (Fig. 1A). Pluripotency markers were examined via immunocytochemical staining using antibodies against human OCT-4, TRA-1-60 and Nanog (Fig. 1B). Flow cytometric analysis showed that more than 99% of the cells expressed OCT-4 and TRA-1-60 (Fig. 1C). The karyotype of CHCHD2-01 iPSCs was numerically and structurally normal (Fig. 1D). The mutation (c.182C > T; p.Thr61Ile) in CHCHD2 was confirmed by Sanger sequencing in the newly established iPSC line (Fig. 1E). Episomal plasmids were detected by polymerase chain reaction (PCR) using episomal plasmid-specific primers and disappeared from passage 15 (Fig. 1F). Furthermore, the iPSC line had the potential to differentiate into cells of all three germ layers in vivo (Fig. 1G).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cells, Cultured
  • DNA-Binding Proteins
  • Fibroblasts / cytology
  • Fibroblasts / metabolism
  • Flow Cytometry
  • Humans
  • Immunohistochemistry
  • Induced Pluripotent Stem Cells / cytology*
  • Induced Pluripotent Stem Cells / metabolism
  • Kruppel-Like Factor 4
  • Male
  • Microsatellite Repeats / genetics
  • Middle Aged
  • Mitochondrial Proteins / genetics*
  • Mutation / genetics
  • Parkinson Disease / genetics
  • Parkinson Disease / metabolism
  • Transcription Factors / genetics*

Substances

  • CHCHD2 protein, human
  • DNA-Binding Proteins
  • KLF4 protein, human
  • Kruppel-Like Factor 4
  • Mitochondrial Proteins
  • Transcription Factors