A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding
- PMID: 30239876
- PMCID: PMC6212834
- DOI: 10.1093/nar/gky844
A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding
Abstract
Recently, Type III-A CRISPR-Cas systems were found to catalyze the synthesis of cyclic oligoadenylates (cOAs), a second messenger that specifically activates Csm6, a Cas accessory RNase and confers antiviral defense in bacteria. To test if III-B CRISPR-Cas systems could mediate a similar CRISPR signaling pathway, the Sulfolobus islandicus Cmr-α ribonucleoprotein complex (Cmr-α-RNP) was purified from the native host and tested for cOA synthesis. We found that the system showed a robust production of cyclic tetra-adenylate (c-A4), and that c-A4 functions as a second messenger to activate the III-B-associated RNase Csx1 by binding to its CRISPR-associated Rossmann Fold domain. Investigation of the kinetics of cOA synthesis revealed that Cmr-α-RNP displayed positively cooperative binding to the adenosine triphosphate (ATP) substrate. Furthermore, mutagenesis of conserved domains in Cmr2α confirmed that, while Palm 2 hosts the active site of cOA synthesis, Palm 1 domain serves as the primary site in the enzyme-substrate interaction. Together, our data suggest that the two Palm domains cooperatively interact with ATP molecules to achieve a robust cOA synthesis by the III-B CRISPR-Cas system.
Figures
Similar articles
-
Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems.Methods Enzymol. 2019;616:191-218. doi: 10.1016/bs.mie.2018.10.020. Epub 2019 Jan 12. Methods Enzymol. 2019. PMID: 30691643
-
Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex.RNA. 2019 Aug;25(8):948-962. doi: 10.1261/rna.070417.119. Epub 2019 May 10. RNA. 2019. PMID: 31076459 Free PMC article.
-
Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA4.J Biol Chem. 2020 Oct 30;295(44):14963-14972. doi: 10.1074/jbc.RA120.014099. Epub 2020 Aug 21. J Biol Chem. 2020. PMID: 32826317 Free PMC article.
-
The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.Biochem Soc Trans. 2022 Oct 31;50(5):1353-1364. doi: 10.1042/BST20220289. Biochem Soc Trans. 2022. PMID: 36282000 Free PMC article. Review.
-
The Cyclic Oligoadenylate Signaling Pathway of Type III CRISPR-Cas Systems.Front Microbiol. 2021 Jan 20;11:602789. doi: 10.3389/fmicb.2020.602789. eCollection 2020. Front Microbiol. 2021. PMID: 33552016 Free PMC article. Review.
Cited by
-
Analysis of a photosynthetic cyanobacterium rich in internal membrane systems via gradient profiling by sequencing (Grad-seq).Plant Cell. 2021 Apr 17;33(2):248-269. doi: 10.1093/plcell/koaa017. Plant Cell. 2021. PMID: 33793824 Free PMC article.
-
Retention of the RNA ends provides the molecular memory for maintaining the activation of the Csm complex.Nucleic Acids Res. 2024 Apr 24;52(7):3896-3910. doi: 10.1093/nar/gkae080. Nucleic Acids Res. 2024. PMID: 38340341 Free PMC article.
-
A seed motif for target RNA capture enables efficient immune defence by a type III-B CRISPR-Cas system.RNA Biol. 2019 Sep;16(9):1166-1178. doi: 10.1080/15476286.2019.1618693. Epub 2019 May 26. RNA Biol. 2019. PMID: 31096876 Free PMC article.
-
Development of clustered regularly interspaced short palindromic repeats/CRISPR-associated technology for potential clinical applications.World J Clin Cases. 2022 Jun 26;10(18):5934-5945. doi: 10.12998/wjcc.v10.i18.5934. World J Clin Cases. 2022. PMID: 35949837 Free PMC article. Review.
-
Inactivation of Target RNA Cleavage of a III-B CRISPR-Cas System Induces Robust Autoimmunity in Saccharolobus islandicus.Int J Mol Sci. 2022 Jul 31;23(15):8515. doi: 10.3390/ijms23158515. Int J Mol Sci. 2022. PMID: 35955649 Free PMC article.
References
-
- Amitai G., Sorek R.. CRISPR-Cas adaptation: insights into the mechanism of action. Nat. Rev. Microbiol. 2016; 14:67–76. - PubMed
-
- Sternberg S.H., Richter H., Charpentier E., Qimron U.. Adaptation in CRISPR-Cas systems. Mol. Cell. 2016; 61:797–808. - PubMed
-
- Jackson S.A., McKenzie R.E., Fagerlund R.D., Kieper S.N., Fineran P.C., Brouns S.J.. CRISPR-Cas: adapting to change. Science. 2017; 356:aal5056. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
