Disorder-Driven Transition from s_{±} to s_{++} Superconducting Order Parameter in Proton Irradiated Ba(Fe_{1-x}Rh_{x})_{2}As_{2} Single Crystals

Phys Rev Lett. 2018 Sep 7;121(10):107001. doi: 10.1103/PhysRevLett.121.107001.

Abstract

Microwave measurements of the London penetration depth and critical temperature T_{c} were used to show evidence of a disordered-driven transition from s_{±} to s_{++} order parameter symmetry in optimally doped Ba(Fe_{1-x}Rh_{x})_{2}As_{2} single crystals, where disorder was induced by means of 3.5 MeV proton irradiation. Signatures of such a transition, as theoretically predicted [V. D. Efremov et al., Phys. Rev. B 84, 180512(R) (2011)PRBMDO1098-012110.1103/PhysRevB.84.180512], are found as a drop in the low-temperature values of the London penetration depth and a virtually disorder-independent superconducting T_{c}. We show how these experimental observations can be described by multiband Eliashberg calculations in which the effect of disorder is accounted for in a suitable way. To this aim, an effective two-band approach is adopted, allowing us to treat disorder in a range between the Born approximation and the unitary limit.