Stages and transitions in dendrite arbor differentiation
- PMID: 30243907
- DOI: 10.1016/j.neures.2018.09.015
Stages and transitions in dendrite arbor differentiation
Abstract
Neurons connect through dendrite arbors to receive inputs from their appropriate partners. The branching pattern, size, and input distribution in the arbor determine neuron function. Complex nervous system activity depends on creating and wiring a wide diversity of neuron types, each with a characteristic arbor organization. Here we discuss how, by tracking arbor differentiation in vivo, a mature dendrite arbor pattern is derived from the compound outcome of a series of different stages of arbor elaboration. We highlight core stages of elaboration shared between different model systems, and how regulating the transformation between these stages controls the dendrite arbor differentiation process. Finally, we discuss how control over these transformations creates neuron type-specific dendrite arbor morphologies, contributes to nervous system evolution, and is perturbed in disease.
Keywords: Dendrite arbor branching; Dendrite arbor differentiations; Dendrite differentiation transitions.
Copyright © 2018 Elsevier B.V. and Japan Neuroscience Society. All rights reserved.
Similar articles
-
Microtubule nucleation and organization in dendrites.Cell Cycle. 2016 Jul 2;15(13):1685-92. doi: 10.1080/15384101.2016.1172158. Epub 2016 Apr 20. Cell Cycle. 2016. PMID: 27097122 Free PMC article.
-
Mechanisms regulating dendritic arbor patterning.Cell Mol Life Sci. 2017 Dec;74(24):4511-4537. doi: 10.1007/s00018-017-2588-8. Epub 2017 Jul 22. Cell Mol Life Sci. 2017. PMID: 28735442 Free PMC article. Review.
-
Transcription factor encoding of neuron subtype: Strategies that specify arbor pattern.Curr Opin Neurobiol. 2021 Aug;69:149-158. doi: 10.1016/j.conb.2021.03.013. Epub 2021 Apr 23. Curr Opin Neurobiol. 2021. PMID: 33895620 Review.
-
Automated Sholl analysis of digitized neuronal morphology at multiple scales.J Vis Exp. 2010 Nov 14;(45):2354. doi: 10.3791/2354. J Vis Exp. 2010. PMID: 21113115 Free PMC article.
-
In vivo observations of timecourse and distribution of morphological dynamics in Xenopus retinotectal axon arbors.J Neurobiol. 1996 Oct;31(2):219-34. doi: 10.1002/(SICI)1097-4695(199610)31:2<219::AID-NEU7>3.0.CO;2-E. J Neurobiol. 1996. PMID: 8885202
Cited by
-
Distinct Microtubule Organizing Center Mechanisms Combine to Generate Neuron Polarity and Arbor Complexity.Front Cell Neurosci. 2020 Nov 19;14:594199. doi: 10.3389/fncel.2020.594199. eCollection 2020. Front Cell Neurosci. 2020. PMID: 33328893 Free PMC article. Review.
-
GRIN2B-related neurodevelopmental disorder: current understanding of pathophysiological mechanisms.Front Synaptic Neurosci. 2023 Jan 10;14:1090865. doi: 10.3389/fnsyn.2022.1090865. eCollection 2022. Front Synaptic Neurosci. 2023. PMID: 36704660 Free PMC article. Review.
-
Achieving functional neuronal dendrite structure through sequential stochastic growth and retraction.Elife. 2020 Nov 26;9:e60920. doi: 10.7554/eLife.60920. Elife. 2020. PMID: 33241995 Free PMC article.
-
An Autism-Associated de novo Mutation in GluN2B Destabilizes Growing Dendrites by Promoting Retraction and Pruning.Front Cell Neurosci. 2021 Jul 30;15:692232. doi: 10.3389/fncel.2021.692232. eCollection 2021. Front Cell Neurosci. 2021. PMID: 34393725 Free PMC article.
-
Semaphorin-5B Controls Spiral Ganglion Neuron Branch Refinement during Development.J Neurosci. 2019 Aug 14;39(33):6425-6438. doi: 10.1523/JNEUROSCI.0113-19.2019. Epub 2019 Jun 17. J Neurosci. 2019. PMID: 31209173 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
