Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab
- PMID: 30250444
- PMCID: PMC6139437
- DOI: 10.3389/fpsyg.2018.01679
Calculation of Average Mutual Information (AMI) and False-Nearest Neighbors (FNN) for the Estimation of Embedding Parameters of Multidimensional Time Series in Matlab
Abstract
Using the method or time-delayed embedding, a signal can be embedded into higher-dimensional space in order to study its dynamics. This requires knowledge of two parameters: The delay parameter τ, and the embedding dimension parameter D. Two standard methods to estimate these parameters in one-dimensional time series involve the inspection of the Average Mutual Information (AMI) function and the False Nearest Neighbor (FNN) function. In some contexts, however, such as phase-space reconstruction for Multidimensional Recurrence Quantification Analysis (MdRQA), the empirical time series that need to be embedded already possess a dimensionality higher than one. In the current article, we present extensions of the AMI and FNN functions for higher dimensional time series and their application to data from the Lorenz system coded in Matlab.
Keywords: Multidimensional Recurrence Quantification Analysis; Multidimensional Time series; average mutual information; code:Matlab; false-nearest neighbors; time-delayed embedding.
Figures
Similar articles
-
Multidimensional Recurrence Quantification Analysis (MdRQA) for the Analysis of Multidimensional Time-Series: A Software Implementation in MATLAB and Its Application to Group-Level Data in Joint Action.Front Psychol. 2016 Nov 22;7:1835. doi: 10.3389/fpsyg.2016.01835. eCollection 2016. Front Psychol. 2016. PMID: 27920748 Free PMC article.
-
Attractor reconstruction for non-linear systems: a methodological note.Math Biosci. 2001 May;171(1):21-32. doi: 10.1016/s0025-5564(01)00053-0. Math Biosci. 2001. PMID: 11325382
-
Complexity of COVID-19 Dynamics.Entropy (Basel). 2021 Dec 27;24(1):50. doi: 10.3390/e24010050. Entropy (Basel). 2021. PMID: 35052076 Free PMC article.
-
Selection of Embedding Dimension and Delay Time in Phase Space Reconstruction via Symbolic Dynamics.Entropy (Basel). 2021 Feb 11;23(2):221. doi: 10.3390/e23020221. Entropy (Basel). 2021. PMID: 33670103 Free PMC article.
-
Filtering affects the calculation of the largest Lyapunov exponent.Comput Biol Med. 2020 Jul;122:103786. doi: 10.1016/j.compbiomed.2020.103786. Epub 2020 Apr 30. Comput Biol Med. 2020. PMID: 32479345
Cited by
-
Comparison of sensitivity among dynamic balance measures during walking with different tasks.R Soc Open Sci. 2024 Jan 31;11(1):230883. doi: 10.1098/rsos.230883. eCollection 2024 Jan. R Soc Open Sci. 2024. PMID: 38298402 Free PMC article.
-
What can entropy metrics tell us about the characteristics of ocular fixation trajectories?PLoS One. 2024 Jan 2;19(1):e0291823. doi: 10.1371/journal.pone.0291823. eCollection 2024. PLoS One. 2024. PMID: 38166054 Free PMC article.
-
A method of stall recognition using nonlinear feature extraction from the compressor outlet pressure.Heliyon. 2023 Oct 17;9(10):e20909. doi: 10.1016/j.heliyon.2023.e20909. eCollection 2023 Oct. Heliyon. 2023. PMID: 37916116 Free PMC article.
-
Bimanual finger coordination in professional and amateur darbuka players.Exp Brain Res. 2023 Dec;241(11-12):2645-2654. doi: 10.1007/s00221-023-06703-9. Epub 2023 Sep 26. Exp Brain Res. 2023. PMID: 37750874 Free PMC article.
-
The Effect of Skeletal Muscle-Pump on Blood Pressure and Postural Control in Parkinson's Disease.Cardiovasc Eng Technol. 2023 Dec;14(6):755-773. doi: 10.1007/s13239-023-00685-z. Epub 2023 Sep 25. Cardiovasc Eng Technol. 2023. PMID: 37749359
References
-
- Abarbanel H. (1996). Analysis of Observed Chaotic Data. New York, NY: Springer.
LinkOut - more resources
Full Text Sources
Other Literature Sources
