Quantum thermal transistor based on qubit-qutrit coupling

Phys Rev E. 2018 Aug;98(2-1):022118. doi: 10.1103/PhysRevE.98.022118.

Abstract

A quantum thermal transistor is designed by the strong coupling between one qubit and one qutrit which are in contact with three heat baths with different temperatures. The thermal behavior is analyzed based on the master equation by both the numerical and the approximately analytic methods. It is shown that the thermal transistor, as a three-terminal device, allows a weak modulation heat current (at the modulation terminal) to switch on and off and effectively modulate the heat current between the other two terminals. In particular, the weak modulation heat current can induce the strong heat current between the other two terminals with the multiple-region amplification of heat current. Furthermore, the heat currents are quite robust to the temperature (current) fluctuation at the lower-temperature terminal within a certain range of temperature, and so it can behave as a heat current stabilizer.