Landscape of Acquired Resistance to Osimertinib in EGFR-Mutant NSCLC and Clinical Validation of Combined EGFR and RET Inhibition with Osimertinib and BLU-667 for Acquired RET Fusion

Cancer Discov. 2018 Dec;8(12):1529-1539. doi: 10.1158/2159-8290.CD-18-1022. Epub 2018 Sep 26.

Abstract

We present a cohort of 41 patients with osimertinib resistance biopsies, including 2 with an acquired CCDC6-RET fusion. Although RET fusions have been identified in resistant EGFR-mutant non-small cell lung cancer (NSCLC), their role in acquired resistance to EGFR inhibitors is not well described. To assess the biological implications of RET fusions in an EGFR-mutant cancer, we expressed CCDC6-RET in PC9 (EGFR del19) and MGH134 (EGFR L858R/T790M) cells and found that CCDC6-RET was sufficient to confer resistance to EGFR tyrosine kinase inhibitors (TKI). The selective RET inhibitors BLU-667 and cabozantinib resensitized CCDC6-RET-expressing cells to EGFR inhibition. Finally, we treated 2 patients with EGFR-mutant NSCLC and RET-mediated resistance with osimertinib and BLU-667. The combination was well tolerated and led to rapid radiographic response in both patients. This study provides proof of concept that RET fusions can mediate acquired resistance to EGFR TKIs and that combined EGFR and RET inhibition with osimertinib/BLU-667 may be a well-tolerated and effective treatment strategy for such patients. SIGNIFICANCE: The role of RET fusions in resistant EGFR-mutant cancers is unknown. We report that RET fusions mediate resistance to EGFR inhibitors and demonstrate that this bypass track can be effectively targeted with a selective RET inhibitor (BLU-667) in the clinic.This article is highlighted in the In This Issue feature, p. 1494.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acrylamides / pharmacology
  • Acrylamides / therapeutic use*
  • Adult
  • Aged
  • Aged, 80 and over
  • Aniline Compounds / pharmacology
  • Aniline Compounds / therapeutic use*
  • Carcinoma, Non-Small-Cell Lung / drug therapy*
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Cell Line, Tumor
  • Cohort Studies
  • Cytoskeletal Proteins / genetics
  • Cytoskeletal Proteins / metabolism
  • Drug Resistance, Neoplasm / drug effects*
  • Drug Resistance, Neoplasm / genetics
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Female
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Male
  • Middle Aged
  • Mutation
  • Oncogene Proteins, Fusion / genetics
  • Oncogene Proteins, Fusion / metabolism
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Proto-Oncogene Proteins c-ret / antagonists & inhibitors*
  • Proto-Oncogene Proteins c-ret / genetics
  • Proto-Oncogene Proteins c-ret / metabolism

Substances

  • Acrylamides
  • Aniline Compounds
  • CCDC6 protein, human
  • Cytoskeletal Proteins
  • Oncogene Proteins, Fusion
  • Protein Kinase Inhibitors
  • osimertinib
  • EGFR protein, human
  • ErbB Receptors
  • Proto-Oncogene Proteins c-ret
  • RET protein, human