Some lactobacilli strains had beneficial effects on human beings due to their antioxidant activities. In this study lactobacilli strains stored in our laboratory were screened for potential antioxidant activities by investigating their 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity, oxygen radical absorbance capacity, resistance to H2O2, and hydroxyl free radical scavenging activity; then the antioxidant activities of the screened strains were evaluated by cellular antioxidant assay and protection for HT-29 cells against H2O2 injury assay. The results showed that Lactobacillus plantarum Y44 could scavenge oxygen free radicals, inhibit the production of intracellular reactive oxygen species without creating obvious cytotoxic effects, and protect HT-29 cells against H2O2 injury evidenced by the significant decrease of the Bcl-2-associated X protein (Bax)/B-cell lymphoma 2 (Bcl-2) ratio and heat shock protein 70 expression, increase of superoxide dismutase and glutathione peroxidase activities, and decrease of malondialdehyde level of HT-29 cells damaged by H2O2. It was speculated that L. plantarum Y44 protect HT-29 cells against oxygen radical injury through scavenging reactive oxygen species and activating intracellular antioxidant enzymes. A significant correlation was observed among the results of the hydroxyl radical scavenging assay, protection assay for HT-29 cells against H2O2 injury, and the cellular antioxidant assay. The findings indicated that L. plantarum Y44 could be a probiotic candidate with antioxidant properties and combining several chemical antioxidant methods and antioxidant cellular models could be an effective procedure to screen lactobacilli strains with antioxidant activity.
Keywords: Lactobacillus; antioxidant activity; cellular antioxidant method; chemical antioxidant method.
Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.