Recently, numerous musculoskeletal robots have been developed to realize the flexibility and dexterity analogous to human beings and animals. However, because the arrangement of many actuators is complex, the design of the control system for the robot is difficult and challenging. We believe that control methods inspired by living things are important in the development of the control systems for musculoskeletal robots. In this study, we propose a muscle coordination control method using attractor selection, a biologically inspired search method, for an antagonistic-driven musculoskeletal robot in which various muscles (monoarticular muscles and a polyarticular muscle) are arranged asymmetrically. First, muscle coordination control models for the musculoskeletal robot are built using virtual antagonistic muscle structures with a virtually symmetric muscle arrangement. Next, the attractor selection is applied to the control model and subsequently applied to the previous control model without muscle coordination to compare the control model's performance. Finally, position control experiments are conducted, and the effectiveness of the proposed muscle coordination control and the virtual antagonistic muscle structure is evaluated.