An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge
- PMID: 30276503
- PMCID: PMC6342563
- DOI: 10.1007/s10822-018-0167-1
An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge
Abstract
In this work we have developed a hybrid QM and MM approach to predict pKa of small drug-like molecules in explicit solvent. The gas phase free energy of deprotonation is calculated using the M06-2X density functional theory level with Pople basis sets. The solvation free energy difference of the acid and its conjugate base is calculated at MD level using thermodynamic integration. We applied this method to the 24 drug-like molecules in the SAMPL6 blind pKa prediction challenge. We achieved an overall RMSE of 2.4 pKa units in our prediction. Our results show that further optimization of the protocol needs to be done before this method can be used as an alternative approach to the well established approaches of a full quantum level or empirical pKa prediction methods.
Keywords: Explicit solvent; Hybrid QM and MM; SAMPL6; pKa prediction.
Figures
Similar articles
-
Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge.J Comput Aided Mol Des. 2018 Oct;32(10):1179-1189. doi: 10.1007/s10822-018-0150-x. Epub 2018 Aug 20. J Comput Aided Mol Des. 2018. PMID: 30128926 Free PMC article.
-
SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies.J Comput Aided Mol Des. 2018 Oct;32(10):1203-1216. doi: 10.1007/s10822-018-0138-6. Epub 2018 Aug 6. J Comput Aided Mol Des. 2018. PMID: 30084080 Free PMC article.
-
LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules.J Comput Aided Mol Des. 2020 May;34(5):511-522. doi: 10.1007/s10822-020-00278-1. Epub 2020 Jan 14. J Comput Aided Mol Des. 2020. PMID: 31939103
-
Assessing the accuracy of octanol-water partition coefficient predictions in the SAMPL6 Part II log P Challenge.J Comput Aided Mol Des. 2020 Apr;34(4):335-370. doi: 10.1007/s10822-020-00295-0. Epub 2020 Feb 27. J Comput Aided Mol Des. 2020. PMID: 32107702 Free PMC article.
-
High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge.J Comput Aided Mol Des. 2018 Oct;32(10):1139-1149. doi: 10.1007/s10822-018-0145-7. Epub 2018 Aug 23. J Comput Aided Mol Des. 2018. PMID: 30141103
Cited by
-
Calculating the Aqueous pKa of Phenols: Predictions for Antioxidants and Cannabinoids.Antioxidants (Basel). 2023 Jul 13;12(7):1420. doi: 10.3390/antiox12071420. Antioxidants (Basel). 2023. PMID: 37507958 Free PMC article.
-
Insights into the coordination chemistry of antineoplastic doxorubicin with 3d-transition metal ions Zn2+, Cu2+, and VO2+: a study using well-calibrated thermodynamic cycles and chemical interaction quantum chemistry models.J Comput Aided Mol Des. 2023 Jul;37(7):279-299. doi: 10.1007/s10822-023-00506-4. Epub 2023 May 28. J Comput Aided Mol Des. 2023. PMID: 37245168
-
Improving Small Molecule pK a Prediction Using Transfer Learning With Graph Neural Networks.Front Chem. 2022 May 26;10:866585. doi: 10.3389/fchem.2022.866585. eCollection 2022. Front Chem. 2022. PMID: 35721000 Free PMC article.
-
Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge.J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24. J Comput Aided Mol Des. 2021. PMID: 34169394 Free PMC article.
-
SAMPL7 blind challenge: quantum-mechanical prediction of partition coefficients and acid dissociation constants for small drug-like molecules.J Comput Aided Mol Des. 2021 Jul;35(7):841-851. doi: 10.1007/s10822-021-00402-9. Epub 2021 Jun 24. J Comput Aided Mol Des. 2021. PMID: 34164769
References
-
- Seybold Paul G. and Shields George C.. Computational estimation of pka values. Wiley Interdisciplinary Reviews: Computational Molecular Science, 5(3):290297, 2015. doi: 10.1002/wcms.1218. - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
