Mechanistic insights into the interaction of the MOG1 protein with the cardiac sodium channel Nav1.5 clarify the molecular basis of Brugada syndrome
- PMID: 30282806
- PMCID: PMC6254340
- DOI: 10.1074/jbc.RA118.003997
Mechanistic insights into the interaction of the MOG1 protein with the cardiac sodium channel Nav1.5 clarify the molecular basis of Brugada syndrome
Abstract
Nav1.5 is the α-subunit of the cardiac sodium channel complex. Abnormal expression of Nav1.5 on the cell surface because of mutations that disrupt Nav1.5 trafficking causes Brugada syndrome (BrS), sick sinus syndrome (SSS), cardiac conduction disease, dilated cardiomyopathy, and sudden infant death syndrome. We and others previously reported that Ran-binding protein MOG1 (MOG1), a small protein that interacts with Nav1.5, promotes Nav1.5 intracellular trafficking to plasma membranes and that a substitution in MOG1, E83D, causes BrS. However, the molecular basis for the MOG1/Nav1.5 interaction and how the E83D substitution causes BrS remains unknown. Here, we assessed the effects of defined MOG1 deletions and alanine-scanning substitutions on MOG1's interaction with Nav1.5. Large deletion analysis mapped the MOG1 domain required for the interaction with Nav1.5 to the region spanning amino acids 146-174, and a refined deletion analysis further narrowed this domain to amino acids 146-155. Site-directed mutagenesis further revealed that Asp-148, Arg-150, and Ser-151 cluster in a peptide loop essential for binding to Nav1.5. GST pulldown and electrophysiological analyses disclosed that the substitutions E83D, D148Q, R150Q, and S151Q disrupt MOG1's interaction with Nav1.5 and significantly reduce its trafficking to the cell surface. Examination of MOG1's 3D structure revealed that Glu-83 and the loop containing Asp-148, Arg-150, and Ser-151 are spatially proximal, suggesting that these residues form a critical binding site for Nav1.5. In conclusion, our findings identify the structural elements in MOG1 that are crucial for its interaction with Nav1.5 and improve our understanding of how the E83D substitution causes BrS.
Keywords: Brugada syndrome (BrS); MOG1; Nav1.5 sodium channel; SCN5A; arrhythmia; cardiac disease; cardiovascular disease; genetic disorder; membrane trafficking; molecular modeling; myocardial ischemia; protein-protein interaction; sodium channel; trafficking.
© 2018 Yu et al.
Conflict of interest statement
The authors declare that they have no conflicts of interest with the contents of this article
Figures
Similar articles
-
Mechanistic insights into the interaction of cardiac sodium channel Nav1.5 with MOG1 and a new molecular mechanism for Brugada syndrome.Heart Rhythm. 2022 Mar;19(3):478-489. doi: 10.1016/j.hrthm.2021.11.026. Epub 2021 Nov 26. Heart Rhythm. 2022. PMID: 34843967
-
Small GTPases SAR1A and SAR1B regulate the trafficking of the cardiac sodium channel Nav1.5.Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3672-3684. doi: 10.1016/j.bbadis.2018.09.003. Epub 2018 Sep 6. Biochim Biophys Acta Mol Basis Dis. 2018. PMID: 30251687 Free PMC article.
-
MOG1: a new susceptibility gene for Brugada syndrome.Circ Cardiovasc Genet. 2011 Jun;4(3):261-8. doi: 10.1161/CIRCGENETICS.110.959130. Epub 2011 Mar 29. Circ Cardiovasc Genet. 2011. PMID: 21447824
-
Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects.J Physiol. 2013 Sep 1;591(17):4099-116. doi: 10.1113/jphysiol.2013.256461. Epub 2013 Jul 1. J Physiol. 2013. PMID: 23818691 Free PMC article. Review.
-
Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model.Biochim Biophys Acta. 2013 Apr;1833(4):886-94. doi: 10.1016/j.bbamcr.2012.10.026. Epub 2012 Oct 31. Biochim Biophys Acta. 2013. PMID: 23123192 Review.
Cited by
-
Microtubule plus-end tracking proteins: novel modulators of cardiac sodium channels and arrhythmogenesis.Cardiovasc Res. 2023 Jul 4;119(7):1461-1479. doi: 10.1093/cvr/cvad052. Cardiovasc Res. 2023. PMID: 37040608 Free PMC article.
-
The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Without Structural Heart Disease.Front Cardiovasc Med. 2022 Jun 15;9:891399. doi: 10.3389/fcvm.2022.891399. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 35783865 Free PMC article. Review.
-
Lipopolysaccharide Modifies Sodium Current Kinetics through ROS and PKC Signalling in Induced Pluripotent Stem-Derived Cardiomyocytes from Brugada Syndrome Patient.J Cardiovasc Dev Dis. 2022 Apr 15;9(4):119. doi: 10.3390/jcdd9040119. J Cardiovasc Dev Dis. 2022. PMID: 35448095 Free PMC article.
-
Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias.Int J Mol Sci. 2022 Jan 26;23(3):1381. doi: 10.3390/ijms23031381. Int J Mol Sci. 2022. PMID: 35163304 Free PMC article. Review.
-
Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling.Cells. 2021 Nov 15;10(11):3175. doi: 10.3390/cells10113175. Cells. 2021. PMID: 34831398 Free PMC article. Review.
References
-
- Chen Q., Kirsch G. E., Zhang D., Brugada R., Brugada J., Brugada P., Potenza D., Moya A., Borggrefe M., Breithardt G., Ortiz-Lopez R., Wang Z., Antzelevitch C., O'Brien R. E., Schulze-Bahr E., Keating M. T., Towbin J. A., and Wang Q. (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392, 293–296 10.1038/32675 - DOI - PubMed
-
- Benson D. W., Silberbach G. M., Kavanaugh-McHugh A., Cottrill C., Zhang Y., Riggs S., Smalls O., Johnson M. C., Watson M. S., Seidman J. G., Seidman C. E., Plowden J., and Kugler J. D. (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104, 1567–1573 10.1172/JCI8154 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
