Programming of the reproductive axis by hormonal and genetic manipulation in mice

Reproduction. 2018 Oct 1;156(4):R101-R109. doi: 10.1530/REP-18-0054.

Abstract

In mammals, the reproductive function is controlled by the hypothalamic–pituitary–gonadal axis. During development, mechanisms mediated by gonadal steroids exert an imprinting at the hypothalamic–pituitary level, by establishing sexual differences in the circuits that control male and female reproduction. In rodents, the testicular production of androgens increases drastically during the fetal/neonatal stage. This process is essential for the masculinization of the reproductive tract, genitals and brain. The conversion of androgens to estrogens in the brain is crucial for the male sexual differentiation and behavior. Conversely, feminization of the brain occurs in the absence of high levels of gonadal steroids during the perinatal period in females. Potential genetic contribution to the differentiation of brain cells through direct effects of genes located on sex chromosomes is also relevant. In this review, we will focus on the phenotypic alterations that occur on the hypothalamic–pituitary–gonadal axis of transgenic mice with persistently elevated expression of the human chorionic gonadotropin hormone (hCG). Excess of endogenously synthesized gonadal steroids due to a constant hCG stimulation is able to disrupt the developmental programming of the hypothalamic–pituitary axis in both transgenic males and females. Locally produced estrogens by the hypothalamic aromatase might play a key role in the phenotype of these mice. The ‘four core genotypes’ mouse model demonstrated a potential influence of sex chromosome genes in brain masculinization before critical periods of sex differentiation. Thus, hormonal and genetic factors interact to regulate the local production of the neurosteroids necessary for the programming of the male and female reproductive function.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Gonadal Steroid Hormones / physiology*
  • Hypothalamo-Hypophyseal System / physiology*
  • Mice
  • Mice, Transgenic
  • Sexual Development*

Substances

  • Gonadal Steroid Hormones