In Euglena gracilis, wax ester fermentation produces ATP during anaerobiosis. Here, we report that anaerobic wax ester production is suppressed when the mitochondrial electron transport chain complex I is inhibited by rotenone, whereas it is increased by the uncoupler carbonyl cyanide m-chlorophenylhydrazone (CCCP). The ADP/ATP ratio in anaerobic cells is elevated by treatment with either rotenone or CCCP. Gene silencing experiments indicate that acyl-CoA dehydrogenase, electron transfer flavoprotein (ETF), and rhodoquinone (RQ) participate in wax ester production. These results suggest that fatty acids are synthesized in mitochondria by the reversal of β-oxidation, where trans-2-enoyl-CoA is reduced mainly by acyl-CoA dehydrogenase using the electrons provided by NADH via the electron transport chain complex I, RQ, and ETF, and that ATP production is highly supported by anaerobic respiration utilizing trans-2-enoyl-CoA as a terminal electron acceptor.
Keywords: Euglena gracilis; anaerobic respiration; mitochondrial electron transfer system; mitochondrial fatty acid synthesis; wax ester fermentation.
© 2018 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.