Tuning Cu/Cu2 O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions

Angew Chem Int Ed Engl. 2018 Nov 19;57(47):15415-15419. doi: 10.1002/anie.201805256. Epub 2018 Oct 31.

Abstract

Artificial photosynthesis can be used to store solar energy and reduce CO2 into fuels to potentially alleviate global warming and the energy crisis. Compared to the generation of gaseous products, it remains a great challenge to tune the product distribution of artificial photosynthesis to liquid fuels, such as CH3 OH, which are suitable for storage and transport. Herein, we describe the introduction of metallic Cu nanoparticles (NPs) on Cu2 O films to change the product distribution from gaseous products on bare Cu2 O to predominantly CH3 OH by CO2 reduction in aqueous solutions. The specifically designed Cu/Cu2 O interfaces balance the binding strengths of H* and CO* intermediates, which play critical roles in CH3 OH production. With a TiO2 model photoanode to construct a photoelectrochemical cell, a Cu/Cu2 O dark cathode exhibited a Faradaic efficiency of up to 53.6 % for CH3 OH production. This work demonstrates the feasibility and mechanism of interface engineering to enhance the CH3 OH production from CO2 reduction in aqueous electrolytes.

Keywords: CO2 reduction; artificial photosynthesis; copper; interfaces; methanol.