Colorectal cancer (CRC) is a major health problem due to its high mortality rate. The incidence of CRC is increasing in young individuals. Oxaliplatin (OXA) is an approved third-generation drug and is used for first-line chemotherapy in CRC. Although current standard chemotherapy improves the overall survival of CRC patients, an increasing number of reports of OXA resistance in CRC therapy indicates that resistance has become an urgent problem in clinical applications. Dicer is a critical enzyme involved in miRNA maturation. The expression of Dicer has been reported to be involved in the resistance to various drugs in cancer. In the present study, we aimed to investigate the role of Dicer in OXA resistance in CRC. We found that OXA treatment inhibited Dicer expression through decreasing the protein stability. OXA-induced Dicer protein degradation occurred through both proteasomal and lysosomal proteolysis, while the CHIP E3 ligase was involved in OXA-mediated Dicer ubiquitination and degradation. We established stable OXA-resistant clones from CRC cells, and observed that the CHIP E3 ligase was decreased, along with the increased Dicer expression in OXA-resistant cells. Knockdown of Dicer resensitized CRC cells to OXA treatment. In this study, we have revealed the role of miRNA biogenesis factors in OXA resistance in CRC cells.
Keywords: CHIP; Dicer; Oxaliplatin; Ubiquitination.
Copyright © 2018 Elsevier Inc. All rights reserved.