Mitigating river sediment enrichment through the construction of roadside wetlands

J Environ Manage. 2019 Feb 1:231:146-154. doi: 10.1016/j.jenvman.2018.10.035. Epub 2018 Oct 16.

Abstract

Metalled roads have been shown to act as a major pathway for land-to-river sediment transfer, but there currently exists limited research into mitigation solutions to tackle this pollution source. The aim of this study was to assess the effectiveness of three roadside constructed wetlands, installed in September 2016, at reducing sediment enrichment in a tributary of the River Wensum, UK. Two wetland designs were trialled (linear and 'U-shaped'), both of which act as settling ponds to encourage entrained sediment to fall out of suspension and allow cleaner water to discharge into the river. Wetland efficiency was monitored through automated, high-resolution (30 min) turbidity probes installed upstream and downstream of the wetlands, providing a near-continuous record of river turbidity before (October 2011-August 2016) and after (November 2016-February 2018) installation. This was supplemented by lower resolution monitoring of the wetland inflows and outflows, as well as an assessment of sediment and nutrient accumulation rates within the linear wetland. Results revealed median river sediment concentrations decreased up to 14% after wetland construction and sediment load decreased by up to 82%, although this was largely driven by low river discharge post-installation. Median sediment concentrations discharging from the linear wetland (7.2 mg L-1) were higher than the U-shaped wetland (3.9 mg L-1), confirming that a longer flow pathway through wetlands can improve sediment retention efficiency. After 12 months of operation, the linear wetland had retained 7253 kg (305 kg ha-1 y-1) of sediment, 11.6 kg (0.5 kg ha-1 y-1) of total phosphorus, 29.7 kg (1.3 kg ha-1 y-1) of total nitrogen and 400 kg (17 kg ha-1 y-1) of organic carbon. This translates into mitigated pollutant damage costs of £392 for sediment, £148 for phosphorus and £13 for nitrogen, thus giving a combined total mitigated damage cost of £553 y-1. With the linear wetland costing £3411 to install and £145-182 y-1 to maintain, this roadside constructed wetland has an estimated payback time of 8 years, making it a cost-effective pollution mitigation measure for tackling sediment-enriched road runoff that could be widely adopted at the catchment-scale.

Keywords: River; Sediment fingerprinting; Sediment trap; Settling pond; Sustainable urban drainage; Swale.

MeSH terms

  • Carbon
  • Nitrogen
  • Phosphorus
  • Rivers*
  • Wetlands*

Substances

  • Phosphorus
  • Carbon
  • Nitrogen