mCherry-Labeled Verticillium dahliae Could Be Utilized to Investigate Its Pathogenicity Process in Nicotiana benthamiana

Genes (Basel). 2018 Oct 18;9(10):508. doi: 10.3390/genes9100508.

Abstract

Verticillium dahliae is a soil-borne phytopathogenic fungus that causes a destructive vascular wilt, but details of the molecular mechanism behind its pathogenicity are not very clear. Here, we generated a red fluorescent isolate of V. dahliae by protoplast transformation to explore its pathogenicity mechanism, including colonization, invasion, and extension in Nicotiana benthamiana, using confocal microscopy. The nucleotide sequences of mCherry were optimized for fungal expression and cloned into pCT-HM plasmid, which was inserted into V. dahliae protoplasts. The transformant (Vd-m) shows strong red fluorescence and its phenotype, growth rate, and pathogenicity did not differ significantly from the wild type V. dahliae (Vd-wt). Between one and three days post inoculation (dpi), the Vd-m successfully colonized and invaded epidermal cells of the roots. From four to six dpi, hyphae grew on root wounds and lateral root primordium and entered xylem vessels. From seven to nine dpi, hyphae extended along the surface of the cell wall and massively grew in the xylem vessel of roots. At ten dpi, the Vd-m was found in petioles and veins of leaves. Our results distinctly showed the pathway of V. dahliae infection and colonization in N. benthamiana, and the optimized expression can be used to deepen our understanding of the molecular mechanism of pathogenicity.

Keywords: Nicotiana benthamiana; Verticillium dahliae; mCherry; pathogenic process.