HSP90-incorporating chaperome networks as biosensor for disease-related pathways in patient-specific midbrain dopamine neurons

Nat Commun. 2018 Oct 19;9(1):4345. doi: 10.1038/s41467-018-06486-6.


Environmental and genetic risk factors contribute to Parkinson's Disease (PD) pathogenesis and the associated midbrain dopamine (mDA) neuron loss. Here, we identify early PD pathogenic events by developing methodology that utilizes recent innovations in human pluripotent stem cells (hPSC) and chemical sensors of HSP90-incorporating chaperome networks. We show that events triggered by PD-related genetic or toxic stimuli alter the neuronal proteome, thereby altering the stress-specific chaperome networks, which produce changes detected by chemical sensors. Through this method we identify STAT3 and NF-κB signaling activation as examples of genetic stress, and phospho-tyrosine hydroxylase (TH) activation as an example of toxic stress-induced pathways in PD neurons. Importantly, pharmacological inhibition of the stress chaperome network reversed abnormal phospho-STAT3 signaling and phospho-TH-related dopamine levels and rescued PD neuron viability. The use of chemical sensors of chaperome networks on hPSC-derived lineages may present a general strategy to identify molecular events associated with neurodegenerative diseases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosensing Techniques
  • Dopaminergic Neurons / metabolism*
  • HSP90 Heat-Shock Proteins / metabolism*
  • HSP90 Heat-Shock Proteins / physiology
  • Mesencephalon / metabolism*
  • Mesencephalon / pathology
  • NF-kappa B / metabolism
  • STAT3 Transcription Factor / metabolism
  • Stress, Physiological


  • HSP90 Heat-Shock Proteins
  • NF-kappa B
  • STAT3 Transcription Factor