An update on the role of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways in pediatric diseases

World J Pediatr. 2019 Feb;15(1):4-11. doi: 10.1007/s12519-018-0198-7. Epub 2018 Oct 20.

Abstract

Background: Bone remodeling is a lifelong process due to the balanced activity of osteoclasts (OCs), the bone-reabsorbing cells, and osteoblasts (OBs), and the bone-forming cells. This equilibrium is regulated by numerous cytokines, but it has been largely demonstrated that the RANK/RANKL/osteoprotegerin and Wnt/β-catenin pathways play a key role in the control of osteoclastogenesis and osteoblastogenesis, respectively. The pro-osteoblastogenic activity of the Wnt/β-catenin can be inhibited by sclerostin and Dickkopf-1 (DKK-1). RANKL, sclerostin and DKKs-1 are often up-regulated in bone diseases, and they are the target of new monoclonal antibodies.

Data sources: The authors performed a systematic literature search in PubMed and EMBASE to June 2018, reviewed and selected articles, based on pre-determined selection criteria.

Results: We re-evaluated the role of RANKL, osteoprotegerin, sclerostin and DKK-1 in altered bone remodeling associated with some inherited and acquired pediatric diseases, such as type 1 diabetes mellitus (T1DM), alkaptonuria (AKU), hemophilia A, osteogenesis imperfecta (OI), 21-hydroxylase deficiency (21OH-D) and Prader-Willi syndrome (PWS). To do so, we considered recent clinical studies done on pediatric patients in which the roles of RANKL-RANK/osteoprotegerin and WNT-ß-catenin signaling pathways have been investigated, and for which innovative therapies for the treatment of osteopenia/osteoporosis are being developed.

Conclusions: The case studies taken into account for this review demonstrated that quite frequently both bone reabsorbing and bone deposition are impaired in pediatric diseases. Furthermore, for some of them, bone damage began in childhood but only manifested with age. The use of denosumab could represent a valid alternative therapeutic approach to improve bone health in children, although further studies need to be carried out.

Keywords: Pediatric diseases; RANKL-RANK/Osteoprotegerin; WNT-ß-catenin signaling.

Publication types

  • Systematic Review

MeSH terms

  • Adrenal Hyperplasia, Congenital / blood
  • Adrenal Hyperplasia, Congenital / physiopathology
  • Alkaptonuria / blood
  • Alkaptonuria / physiopathology
  • Biomarkers / blood
  • Bone Remodeling / physiology
  • Bone Resorption / blood
  • Bone Resorption / physiopathology*
  • Child
  • Diabetes Mellitus, Type 1 / blood
  • Diabetes Mellitus, Type 1 / physiopathology
  • Hemophilia A / blood
  • Hemophilia A / physiopathology
  • Humans
  • Intercellular Signaling Peptides and Proteins / blood
  • Osteogenesis Imperfecta / blood
  • Osteogenesis Imperfecta / physiopathology
  • Osteoprotegerin / blood*
  • Prader-Willi Syndrome / blood
  • Prader-Willi Syndrome / physiopathology
  • RANK Ligand / blood*
  • Up-Regulation / physiology
  • Wnt Signaling Pathway / physiology*

Substances

  • Biomarkers
  • DKK1 protein, human
  • Intercellular Signaling Peptides and Proteins
  • Osteoprotegerin
  • RANK Ligand
  • TNFSF11 protein, human