Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior

Acc Chem Res. 2018 Nov 20;51(11):2681-2688. doi: 10.1021/acs.accounts.8b00259. Epub 2018 Oct 16.

Abstract

Microorganisms use chemotaxis, regulated by internal complex chemical pathways, to swim along chemical gradients to find better living conditions. Artificial microswimmers can mimic such a strategy by a pure physical process called diffusiophoresis, where they drift and orient along the gradient in a chemical density field. Similarly, for other forms of taxis in nature such as photo- or thermotaxis the phoretic counterpart exists. In this Account, we concentrate on the chemotaxis of self-phoretic active colloids. They are driven by self-electro- and diffusiophoresis at the particle surface and thereby acquire a swimming speed. During this process, they also produce nonuniform chemical fields in their surroundings through which they interact with other colloids by translational and rotational diffusiophoresis. In combination with active motion, this gives rise to effective phoretic attraction and repulsion and thereby to diverse emergent collective behavior. A particular appealing example is dynamic clustering in dilute suspensions first reported by a group from Lyon. A subtle balance of attraction and repulsion causes very dynamic clusters, which form and resolve again. This is in stark contrast to the relatively static clusters of motility-induced phase separation at larger densities. To treat chemotaxis in active colloids confined to a plane, we formulate two Langevin equations for position and orientation, which include translational and rotational diffusiophoretic drift velocities. The colloids are chemical sinks and develop their long-range chemical profiles instantaneously. For dense packings, we include screening of the chemical fields. We present a state diagram in the two diffusiophoretic parameters governing translational, as well as rotational, drift and, thereby, explore the full range of phoretic attraction and repulsion. The identified states range from a gaslike phase over dynamic clustering states 1 and 2, which we distinguish through their cluster size distributions, to different types of collapsed states. The latter include a full chemotactic collapse for translational phoretic attraction. Turning it into an effective repulsion, with increasing strength first the collapsed cluster starts to fluctuate at the rim, then oscillates, and ultimately becomes a static collapsed cloud. We also present a state diagram without screening. Finally, we summarize how the famous Keller-Segel model derives from our Langevin equations through a multipole expansion of the full one-particle distribution function in position and orientation. The Keller-Segel model gives a continuum equation for treating chemotaxis of microorganisms on the level of their spatial density. Our theory is extensible to mixtures of active and passive particles and allows to include a dipolar correction to the chemical field resulting from the dipolar symmetry of Janus colloids.

Publication types

  • Research Support, Non-U.S. Gov't