Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii
- PMID: 30348763
- PMCID: PMC6233092
- DOI: 10.1073/pnas.1811167115
Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from Toxoplasma gondii
Abstract
Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.
Keywords: Apicomplexa; Toxoplasma gondii; X-ray crystallography; motility; myosin.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex.J Biol Chem. 2017 Nov 24;292(47):19469-19477. doi: 10.1074/jbc.M117.809632. Epub 2017 Sep 25. J Biol Chem. 2017. PMID: 28972141 Free PMC article.
-
Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.PLoS Pathog. 2014 Nov 13;10(10):e1004504. doi: 10.1371/journal.ppat.1004504. eCollection 2014 Oct. PLoS Pathog. 2014. PMID: 25393004 Free PMC article.
-
A Toxoplasma gondii class XIV myosin, expressed in Sf9 cells with a parasite co-chaperone, requires two light chains for fast motility.J Biol Chem. 2014 Oct 31;289(44):30832-30841. doi: 10.1074/jbc.M114.572453. Epub 2014 Sep 17. J Biol Chem. 2014. PMID: 25231988 Free PMC article.
-
Toxoplasma gondii: the model apicomplexan.Int J Parasitol. 2004 Mar 9;34(3):423-32. doi: 10.1016/j.ijpara.2003.12.009. Int J Parasitol. 2004. PMID: 15003501 Free PMC article. Review.
-
The Actomyosin Systems in Apicomplexa.Adv Exp Med Biol. 2020;1239:331-354. doi: 10.1007/978-3-030-38062-5_14. Adv Exp Med Biol. 2020. PMID: 32451865 Review.
Cited by
-
Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii.bioRxiv [Preprint]. 2024 Mar 18:2024.03.18.585462. doi: 10.1101/2024.03.18.585462. bioRxiv. 2024. Update in: PLoS Pathog. 2024 Oct 7;20(10):e1012127. doi: 10.1371/journal.ppat.1012127 PMID: 38562694 Free PMC article. Updated. Preprint.
-
High-resolution structures of malaria parasite actomyosin and actin filaments.PLoS Pathog. 2022 Apr 4;18(4):e1010408. doi: 10.1371/journal.ppat.1010408. eCollection 2022 Apr. PLoS Pathog. 2022. PMID: 35377914 Free PMC article.
-
Peptide Probes for Plasmodium falciparum MyoA Tail Interacting Protein (MTIP): Exploring the Druggability of the Malaria Parasite Motor Complex.ACS Chem Biol. 2020 Jun 19;15(6):1313-1320. doi: 10.1021/acschembio.0c00328. Epub 2020 May 13. ACS Chem Biol. 2020. PMID: 32383851 Free PMC article.
-
Structural role of essential light chains in the apicomplexan glideosome.Commun Biol. 2020 Oct 13;3(1):568. doi: 10.1038/s42003-020-01283-8. Commun Biol. 2020. PMID: 33051581 Free PMC article.
-
Structural and regulatory insights into the glideosome-associated connector from Toxoplasma gondii.Elife. 2023 Apr 4;12:e86049. doi: 10.7554/eLife.86049. Elife. 2023. PMID: 37014051 Free PMC article.
References
-
- Harker KS, Ueno N, Lodoen MB. Toxoplasma gondii dissemination: A parasite’s journey through the infected host. Parasite Immunol. 2015;37:141–149. - PubMed
-
- Frenal K, Dubremetz JF, Lebrun M, Soldati-Favre D. Gliding motility powers invasion and egress in Apicomplexa. Nat Rev Microbiol. 2017;15:645–660. - PubMed
-
- Frenal K, Foth BJ, Soldati-Favre D. Myosin class XIV and other myosins inprotists. In: Coluccio LM, editor. Myosins: A Superfamily of Molecular Motors, Proteins and Cell Regulation. Vol 7. Springer; Dordrecht, The Netherlands: 2008. pp. 421–440.
-
- Mueller C, Graindorge A, Soldati-Favre D. Functions of myosin motors tailored for parasitism. Curr Opin Microbiol. 2017;40:113–122. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources
