Effect of centrifugal force on the development of articular neocartilage with bovine primary chondrocytes

Cell Tissue Res. 2019 Mar;375(3):629-639. doi: 10.1007/s00441-018-2938-3. Epub 2018 Oct 23.


A lot has been invested into understanding how to assemble cartilage tissue in vitro and various designs have been developed to manufacture cartilage tissue with native-like biological properties. So far, no satisfactory design has been presented. Bovine primary chondrocytes are used to self-assemble scaffold-free constructs to investigate whether mechanical loading by centrifugal force would be useful in manufacturing cartilage tissue in vitro. Six million chondrocytes were laid on top of defatted bone disks placed inside an agarose well in 50-ml culture tubes. The constructs were centrifuged once or three times per day for 15 min at a centrifugal force of 771×g for up to 4 weeks. Control samples were cultured under the same conditions without exposure to centrifugation. The samples were analysed by (immuno)histochemistry, Fourier transform infrared imaging, micro-computed tomography, biochemical and gene expression analyses. Biomechanical testing was also performed. The centrifuged tissues had a more even surface covering a larger area of the bone disk. Fourier transform infrared imaging analysis indicated a higher concentration of collagen in the top and bottom edges in some of the centrifuged samples. Glycosaminoglycan contents increased along the culture, while collagen content remained at a rather constant level. Aggrecan and procollagen α1(II) gene expression levels had no significant differences, while procollagen α2(I) levels were increased significantly. Biomechanical analyses did not reveal remarkable changes. The centrifugation regimes lead to more uniform tissue constructs, whereas improved biological properties of the native tissue could not be obtained by centrifugation.

Keywords: Cartilage tissue engineering; Centrifugal force; Osteoarthritis; Primary chondrocyte; Tissue assembly.

MeSH terms

  • Animals
  • Cartilage, Articular / growth & development*
  • Cattle
  • Cells, Cultured
  • Centrifugation
  • Chondrocytes / cytology*
  • Chondrocytes / metabolism
  • Collagen / metabolism
  • Elastic Modulus
  • Glycosaminoglycans / metabolism
  • Hydroxyproline / metabolism
  • Materials Testing
  • Organogenesis*
  • Proteoglycans / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Tissue Scaffolds / chemistry


  • Glycosaminoglycans
  • Proteoglycans
  • RNA, Messenger
  • Collagen
  • Hydroxyproline