Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 23;11(1):754.
doi: 10.1186/s13104-018-3864-x.

Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed

Affiliations

Transcriptomic evidence for distinct mechanisms underlying abscission deficiency in the Arabidopsis mutants haesa/haesa-like 2 and nevershed

Isaiah Taylor et al. BMC Res Notes. .

Abstract

Objective: In Arabidopsis, the abscission of floral organs is regulated by two related receptor-like protein kinases, HAESA and HAESA-like 2 (HAE/HSL2). Signaling by HAE/HSL2 leads to expression of genes encoding secreted cell wall remodeling and hydrolase enzymes. hae hsl2 mutants fail to induce expression of these genes and retain floral organs indefinitely. Mutants in the gene NEVERSHED (NEV) also fail to abscise floral organs and phenotypically resemble hae hsl2. NEV encodes an ADP-ribosylation factor GTPase-activating protein that localizes to the trans-Golgi network and early endosome. nev displays altered Golgi morphology and aberrations in vesicular trafficking. The mechanism by which nev fails to abscise is presently unknown. It has been hypothesized that nev fails to activate HAE/HSL2 signaling. In this study we use RNA-Sequencing to test this hypothesis.

Results: We show that the transcriptional alterations in hae hsl2 and nev are highly divergent. hae hsl2 displays a clear reduction in expression of genes associated with cell wall remodeling and pectin degradation, while nev displays vast transcriptional changes associated with response to pathogens. These results suggest that the mechanism of the defect between hae hsl2 and nev are distinct.

Keywords: Abscission; HAESA; HAESA-LIKE2; NEVERSHED.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
RNA-Sequencing of hae hsl2 and nev. a Abscission phenotype of wildtype Col-0, hae-3 hsl2-3, and nev-3. b Transcript abundance measurements for abscission associated polygalacturonase genes. Points represent FPKM values per individual replicates of the indicated genotype. Asterisks below represent statistical significance at FDR < .05. c Heatmap of differentially expressed genes between Col-0, hae-3 hsl2-3, and nev-3
Fig. 2
Fig. 2
RNA-Sequencing of nev and nev serk1. a Abscission phenotype of nev-3 and nev-3 serk1-5. b Transcript abundance measurements for abscission associated polygalacturonase genes. Points represent FPKM values per individual replicates of the indicated genotype. Asterisks below represent statistical significance at FDR < .05 for the indicated comparisons. c Plot of linear regression modelling log2(fold change) of Col-0/nev-3 measurement against nev-3/nev-3 serk1-5 gene expression measurements

Similar articles

Cited by

References

    1. Cho SK, Larue CT, Chevalier D, Wang H, Jinn T-L, Zhang S, et al. Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2008;105(40):15629–15634. doi: 10.1073/pnas.0805539105. - DOI - PMC - PubMed
    1. Stenvik G-E, Tandstad NM, Guo Y, Shi C-L, Kristiansen W, Holmgren A, et al. The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell. 2008;20(7):1805–1817. doi: 10.1105/tpc.108.059139. - DOI - PMC - PubMed
    1. Niederhuth CE, Patharkar OR, Walker JC. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2 by RNA-Seq. BMC Genomics. 2013;14:37. doi: 10.1186/1471-2164-14-37. - DOI - PMC - PubMed
    1. Liljegren SJ, Leslie ME, Darnielle L, Lewis MW, Taylor SM, Luo R, et al. Regulation of membrane trafficking and organ separation by the NEVERSHED ARF-GAP protein. Development. 2009;136(11):1909–1918. doi: 10.1242/dev.033605. - DOI - PMC - PubMed
    1. Liljegren SJ. Organ abscission: exit strategies require signals and moving traffic. Curr Opin Plant Biol. 2012. http://www.sciencedirect.com/science/article/pii/S1369526612001252. Accessed 15 Jan 2014. - PubMed

LinkOut - more resources