Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand

Sci Total Environ. 2019 Feb 20;652:189-201. doi: 10.1016/j.scitotenv.2018.10.201. Epub 2018 Oct 16.

Abstract

This study investigates rice yield and evaluates potential adaptation measures on field management practices for rainfed rice production under climate change scenarios in the Songkhram River Basin, Thailand. The top-down and bottom-up approaches are combined to evaluate the future climate conditions in the Songkhram River Basin and identify adaptation strategies respectively. An ensemble of four Regional Climate Models (RCMs) bias-corrected using the Quantile Mapping technique was used to project the future climate under two climate change scenarios (RCP4.5 and RCP8.5). The DSSAT crop simulation model was used to simulate rice yield and evaluate the impacts of climate change on rice yield, as well as the feasibility of four adaptation options, which were solicited from four hundred farmers through questionnaire surveys in the basin. The strategies include (i) change in planting date, (ii) change in fertiliser application date, (iii) change in fertiliser application dose, and (iv) supplying irrigation water. Based on the model results, future maximum and minimum temperatures are expected to increase by 2.8 and 3.2 °C respectively under RCP8.5 scenario for 2080s. Although annual rainfall may be unchanged, rainfall patterns will shift earlier in future. Evaluation of adaptation strategies suggest that supplying irrigation water under RCP4.5 and RCP8.5 scenarios respectively are the best strategies to increase rice yield under climate change scenarios. Change in fertiliser application date and change in planting date can increase the future rice yield by 12 and 8%, respectively under RCP4.5 scenario for 2080s. Adjusting the fertiliser application dose may however reduce future rice yield. Although supplying irrigation water can aid the production of rainfed rice, other concerns such as the source of water are involved. The feasibility of adaptation actions would depend largely on available resources and mindset of farmers. Further work is warranted in exploring a combination of adaptation strategies and management plans to combat the adverse impacts of climate change.

Keywords: Bottom-up approach; Climate change; DSSAT; Rice production; Thailand; Top-down approach.

MeSH terms

  • Adaptation, Physiological
  • Agriculture / methods*
  • Climate Change*
  • Crops, Agricultural
  • Oryza
  • Rivers
  • Temperature
  • Thailand
  • Water Supply