Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
, 98 (2), 218-224

CPP-ACP Promotes SnF 2 Efficacy in a Polymicrobial Caries Model

Affiliations

CPP-ACP Promotes SnF 2 Efficacy in a Polymicrobial Caries Model

S G Dashper et al. J Dent Res.

Abstract

Dental caries is associated with plaque dysbiosis, leading to an increase in the proportions of acidogenic and aciduric bacteria at the expense of alkali-generating commensal species. Stannous fluoride (SnF2) slows the progression of caries by remineralization of early lesions but has also been suggested to inhibit glycolysis of aciduric bacteria. Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) promotes fluoride remineralization by acting as a salivary biomimetic that releases bioavailable calcium and phosphate ions, and the peptide complex has also been suggested to modify plaque composition. We developed a polymicrobial biofilm model of caries using 6 bacterial species representative of supragingival plaque that were cultured on sound human enamel and pulsed with sucrose 4 times a day to produce a high cariogenic challenge. We used this model to explore the mechanisms of action of SnF2 and CPP-ACP. Bacterial species in the biofilms were enumerated with 16S rRNA gene sequence analyses, and mineral loss and lesion formation were determined in the enamel directly under the polymicrobial biofilms via transverse microradiography. The model tested the twice-daily addition of SnF2, CPP-ACP, or both. SnF2 treatment reduced demineralization by 50% and had a slight effect on the composition of the polymicrobial biofilm. CPP-ACP treatment caused a similar inhibition of enamel demineralization (50%), a decrease in Actinomyces naeslundii and Lactobacillus casei abundance, and an increase in Streptococcus sanguinis and Fusobacterium nucleatum abundance in the polymicrobial biofilm. A combination of SnF2 and CPP-ACP resulted in a greater suppression of the acidogenic and aciduric bacteria and a significant 72% inhibition of enamel demineralization.

Keywords: biofilms; calcium phosphate; dysbiosis; prebiotics; tin fluorides; tooth demineralization.

Similar articles

See all similar articles

Cited by 1 PubMed Central articles

Publication types

MeSH terms

Substances

LinkOut - more resources

Feedback