Homology and Specificity of Natural Sound-Encoding in Human and Monkey Auditory Cortex

Cereb Cortex. 2019 Aug 14;29(9):3636-3650. doi: 10.1093/cercor/bhy243.


Understanding homologies and differences in auditory cortical processing in human and nonhuman primates is an essential step in elucidating the neurobiology of speech and language. Using fMRI responses to natural sounds, we investigated the representation of multiple acoustic features in auditory cortex of awake macaques and humans. Comparative analyses revealed homologous large-scale topographies not only for frequency but also for temporal and spectral modulations. In both species, posterior regions preferably encoded relatively fast temporal and coarse spectral information, whereas anterior regions encoded slow temporal and fine spectral modulations. Conversely, we observed a striking interspecies difference in cortical sensitivity to temporal modulations: While decoding from macaque auditory cortex was most accurate at fast rates (> 30 Hz), humans had highest sensitivity to ~3 Hz, a relevant rate for speech analysis. These findings suggest that characteristic tuning of human auditory cortex to slow temporal modulations is unique and may have emerged as a critical step in the evolution of speech and language.

Keywords: functional MRI; primate auditory cortex; rhesus macaque; spectrotemporal modulations; tonotopy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Cortex / physiology*
  • Auditory Perception / physiology*
  • Brain Mapping
  • Female
  • Humans
  • Macaca mulatta
  • Magnetic Resonance Imaging
  • Male
  • Species Specificity
  • Speech Perception / physiology
  • Vocalization, Animal