Identification of Matrix Metalloproteinase-1-Suppressive Peptides in Feather Keratin Hydrolysate

J Agric Food Chem. 2018 Dec 5;66(48):12719-12729. doi: 10.1021/acs.jafc.8b05213. Epub 2018 Nov 19.


Inhibition of matrix metalloproteinases (MMPs), which degrade collagen and elastin in the dermis of normal skin, is a key strategy for anti-skin aging. In this study, we identified five low-molecular-weight (LMW, <1 kDa) MMP-1-suppressive peptides in feather keratin hydrolysate (FKH) obtained by anaerobic digestion with an extremophilic bacterium. FKH was first subjected to ultrafiltration, followed by size-exclusion chromatography and liquid chromatography/electrospray ionization tandem mass spectrometry analysis. Chemically synthesized peptides identical to the sequences identified suppressed MMP expression in human dermal fibroblasts (HDFs). To investigate the impact of the MMP-1-suppressive peptides on the signaling pathway, we performed antibody array phosphorylation profiling of HDFs. The results suggested that the peptide GGFDL regulates ultraviolet-B-induced MMP-1 expression by inhibiting mitogen-activated protein kinases and nuclear factor κB signaling pathways as well as histone modification. Thus, LMW feather keratin peptides could serve as novel bioactive compounds to protect the skin against intrinsic and extrinsic factors.

Keywords: LMW keratin peptides; MMPs; anaerobic digestion; anti-skin aging; feather keratin hydrolysate.

MeSH terms

  • Animals
  • Avian Proteins / chemistry*
  • Chickens
  • Down-Regulation / drug effects
  • Feathers / chemistry*
  • Fibroblasts / drug effects
  • Fibroblasts / enzymology
  • Fibroblasts / radiation effects
  • Humans
  • Keratins / chemistry*
  • Matrix Metalloproteinase 1 / chemistry
  • Matrix Metalloproteinase 1 / genetics
  • Matrix Metalloproteinase 1 / metabolism
  • Matrix Metalloproteinase Inhibitors / chemistry*
  • Matrix Metalloproteinase Inhibitors / isolation & purification
  • Peptide Mapping
  • Peptides / chemistry*
  • Peptides / isolation & purification
  • Phosphorylation
  • Protein Hydrolysates / chemistry
  • Skin / drug effects
  • Skin / enzymology
  • Skin / radiation effects
  • Skin Aging / drug effects*
  • Skin Aging / genetics
  • Skin Aging / radiation effects
  • Ultraviolet Rays


  • Avian Proteins
  • Matrix Metalloproteinase Inhibitors
  • Peptides
  • Protein Hydrolysates
  • Keratins
  • Matrix Metalloproteinase 1