Stability of the Subaxial Spine after Penetrating Trauma: Do Classification Systems Apply?

Adv Orthop. 2018 Oct 9:2018:6085962. doi: 10.1155/2018/6085962. eCollection 2018.

Abstract

Objective: Blunt spinal trauma classification systems are well established and provide reliable treatment algorithms. To date, stability of the spine after civilian gunshot wounds (CGSWS) is poorly understood. Herein, we investigate the validity of trauma classification systems including the Thoracolumbar Injury Classification and Severity Score (TLICS), Subaxial Cervical Spine Injury Classification and Severity Score (SLIC), and Denis' three-column model when applied to spinal penetrating trauma from gunshots, while secondarily evaluating stability of these injuries.

Methods: Gunshot injuries to the spine were identified from an institutional database from ICD-nine codes. Trauma scorings systems were applied using traditional criteria. Neurologic compromise and spinal stability were evaluated using follow-up clinic notes and radiographs.

Results: Thirty-one patients with CSGSW were evaluated. There was an equal distribution of injuries amongst the spinal levels and spinal columns. Twenty patients had neurological deficits at presentation. Eight patient had a TLICS score >4. Three patients had a SLIC score >4. One patient had surgical treatment. Nonoperative treatment did not lead to spinal instability or adverse outcomes in any cases. The posterior column had a high correlation with neurologic compromise, though not statistically significant (p=.118).

Conclusions: The TLICS, SLIC, and three-column classification systems cannot be applied to CSGSW to quantify injury severity, predict outcomes, or guide treatment decision-making. Despite significant neurologic injuries and disruption of multiple spinal columns, CSGSW do not appear to result in unstable injuries requiring operative intervention. Further research is needed to identify the rare spinal gunshot injury that would benefit from immediate surgical intervention.