Complete genome sequence of Bacillus velezensis Z Y-1-1 reveals the genetic basis for its hemicellulosic/cellulosic substrate-inducible xylanase and cellulase activities

3 Biotech. 2018 Nov;8(11):465. doi: 10.1007/s13205-018-1490-x. Epub 2018 Oct 31.

Abstract

Bacillus velezensis ZY-1-1 was isolated from the larval gut of the lignocellulose-rich diet-fed scarab beetle, Holotrichia parallela, and confirmed to possess extremely high xylanase (48153.8 ± 412.1 U/L) and relatively moderate cellulase activity (610.1 ± 8.2 U/L). Notably, these xylanase and cellulase activities were enhanced by xylan (1.4 and 5.8-fold, respectively) and cellulose (1.1 and 3.5-fold, respectively), which indicated the hemicellulosic/cellulosic substrate-inducible lignocellulolytic activities of this strain. The complete genome of B. velezensis ZY-1-1 comprises of 3,899,251 bp in a circular chromosome with a G + C content of 46.6%. Among the predicted 3688 protein-coding genes, 24 genes are involved in the degradation of lignocellulose and other polysaccharides, including 8, 7 and 2 critical genes for the degradation of xylan, cellulose and lignin, respectively. This genome-based analysis will facilitate our understanding of the mechanism underlying the biodegradation of lignocellulose and the biotechnological application of this novel lignocellulolytic bacteria or related enzymes.

Keywords: Bacillus velezensis; Cellulase; Complete genome; Substrate induction; Xylanase.