Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Oct 23:9:1537.
doi: 10.3389/fpls.2018.01537. eCollection 2018.

Engineering Non-cellulosic Polysaccharides of Wood for the Biorefinery

Affiliations

Engineering Non-cellulosic Polysaccharides of Wood for the Biorefinery

Evgeniy Donev et al. Front Plant Sci. .

Abstract

Non-cellulosic polysaccharides constitute approximately one third of usable woody biomass for human exploitation. In contrast to cellulose, these substances are composed of several different types of unit monosaccharides and their backbones are substituted by various groups. Their structural diversity and recent examples of their modification in transgenic plants and mutants suggest they can be targeted for improving wood-processing properties, thereby facilitating conversion of wood in a biorefinery setting. Critical knowledge on their structure-function relationship is slowly emerging, although our understanding of molecular interactions responsible for observed phenomena is still incomplete. This review: (1) provides an overview of structural features of major non-cellulosic polysaccharides of wood, (2) describes the fate of non-cellulosic polysaccharides during biorefinery processing, (3) shows how the non-cellulosic polysaccharides impact lignocellulose processing focused on yields of either sugars or polymers, and (4) discusses outlooks for the improvement of tree species for biorefinery by modifying the structure of non-cellulosic polysaccharides.

Keywords: galactan; hemicellulose; non-cellulosic polysaccharides; pectin; secondary cell wall; tree genetic improvement; wood biorefining; woody biomass.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Schematic illustration of types of non-cellulosic polysaccharides of wood, including hemicelluloses (gray background), pectins (blue background), callose (yellow background) and AGs-II (orange background), and hardwood fibers and softwood tracheids (inset). Polymer structures were based on different sources: hardwood GX (Teleman, 2009; Smith et al., 2017), softwood arabinoglucuronoxylan (Teleman, 2009; Martínez-Abad et al., 2017; Smith et al., 2017), hardwood and softwood glucomannan (GM), softwood GGM, tension and compression wood galactans, callose (Teleman, 2009), xyloglucan (Carpita and McCann, 2000; Teleman, 2009), HG (Atmodjo et al., 2013), RG-I and -II (Edashige and Ishii, 1996, 1997, 1998; Atmodjo et al., 2013), AG-II (Carpita and McCann, 2000; Hijazi et al., 2014), softwood arabinogalactan (Ponder and Richards, 1997; Teleman, 2009). Polymer localization is based on the following sources: hardwood GX and mannans (Kim and Daniel, 2012; Gorshkova et al., 2015; Guedes et al., 2017), softwood arabinoglucuronoxylan (Altaner et al., 2010; Donaldson and Knox, 2012), callose (Altaner et al., 2010; Zhang et al., 2016), xyloglucan (Bourquin et al., 2002; Sandquist et al., 2010; Nishikubo et al., 2011; Donaldson and Knox, 2012; Kim and Daniel, 2013; Guedes et al., 2017), HG (Kim and Daniel, 2013), RG-I/compression wood galactan/tension wood galactan (Gorshkova et al., 2015; Zhang et al., 2016; Guedes et al., 2017), AG-II/softwood arabinogalactan (Altaner et al., 2010; Guedes et al., 2017). PM, pit membrane; CML, compound middle lamella; S, secondary wall layer (S-layer), G, gelatinous layer (G-layer); C, cavities; S2i, inner S2 layer; S2L, outer lignified S2 layer.

Similar articles

  • Acetylation of woody lignocellulose: significance and regulation.
    Pawar PM, Koutaniemi S, Tenkanen M, Mellerowicz EJ. Pawar PM, et al. Front Plant Sci. 2013 May 21;4:118. doi: 10.3389/fpls.2013.00118. eCollection 2013. Front Plant Sci. 2013. PMID: 23734153 Free PMC article.
  • A sustainable woody biomass biorefinery.
    Liu S, Lu H, Hu R, Shupe A, Lin L, Liang B. Liu S, et al. Biotechnol Adv. 2012 Jul-Aug;30(4):785-810. doi: 10.1016/j.biotechadv.2012.01.013. Epub 2012 Jan 27. Biotechnol Adv. 2012. PMID: 22306164 Review.
  • Hemicellulolytic enzymes in lignocellulose processing.
    Østby H, Várnai A. Østby H, et al. Essays Biochem. 2023 Apr 18;67(3):533-550. doi: 10.1042/EBC20220154. Essays Biochem. 2023. PMID: 37068264 Free PMC article. Review.
  • Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils.
    Bourdon M, Lyczakowski JJ, Cresswell R, Amsbury S, Vilaplana F, Le Guen MJ, Follain N, Wightman R, Su C, Alatorre-Cobos F, Ritter M, Liszka A, Terrett OM, Yadav SR, Vatén A, Nieminen K, Eswaran G, Alonso-Serra J, Müller KH, Iuga D, Miskolczi PC, Kalmbach L, Otero S, Mähönen AP, Bhalerao R, Bulone V, Mansfield SD, Hill S, Burgert I, Beaugrand J, Benitez-Alfonso Y, Dupree R, Dupree P, Helariutta Y. Bourdon M, et al. Nat Plants. 2023 Sep;9(9):1530-1546. doi: 10.1038/s41477-023-01459-0. Epub 2023 Sep 4. Nat Plants. 2023. PMID: 37666966 Free PMC article.
  • Genetic engineering of grass cell wall polysaccharides for biorefining.
    Bhatia R, Gallagher JA, Gomez LD, Bosch M. Bhatia R, et al. Plant Biotechnol J. 2017 Sep;15(9):1071-1092. doi: 10.1111/pbi.12764. Epub 2017 Jun 30. Plant Biotechnol J. 2017. PMID: 28557198 Free PMC article. Review.

Cited by

References

    1. Altaner C. M., Tokareva E. N., Jarvis M. C., Harris P. J. (2010). Distribution of (1→4)-β-galactans, arabinogalactan proteins, xylans and (1→3)-β-glucans in tracheid cell walls of softwoods. Tree Physiol. 30 782–793. 10.1093/treephys/tpq021 - DOI - PubMed
    1. Atmodjo M. A., Hao Z., Mohnen D. (2013). Evolving views of pectin biosynthesis. Annu. Rev. Plant Biol. 64 747–779. 10.1146/annurev-arplant-042811-105534 - DOI - PubMed
    1. Bååth J., Giummarella N., Klaubauf S., Lawoko M., Olsson L. (2016). A glucuronoyl esterase from Acremonium alcalophilum cleaves native lignin-carbohydrate ester bonds. FEBS Lett. 590 2611–2618. 10.1002/1873-3468 - DOI - PubMed
    1. Baba K., Park Y. W., Kaku T., Kaida R., Takeuchi M., Yoshida M., et al. (2009). Xyloglucan for generating tensile stress to bend tree stem. Mol. Plant 2 893–903. 10.1093/mp/ssp054 - DOI - PubMed
    1. Balakshin M., Capanema E. A., Chang H. (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung 61 1–7. 10.1515/HF.2007.001 - DOI

LinkOut - more resources