Carcinogenesis-related changes in iron metabolism in chronic obstructive pulmonary disease subjects with lung cancer

Oncol Lett. 2018 Nov;16(5):6831-6837. doi: 10.3892/ol.2018.9459. Epub 2018 Sep 19.

Abstract

Chronic obstructive pulmonary disease (COPD) is often accompanied by lung cancer. In our previous work, it was observed that matrix metalloproteinase-3 and haptoglobin (HP) polymorphisms were potential markers of enhanced susceptibility to lung cancer development among male COPD subjects. Here, results are reported on blood serum levels of several proteins involved in iron metabolism, inflammation and the oxidative stress response compared between the same groups of subjects. The blood serum levels of tumor necrosis factor α (TNFα), transferrin, hepcidin, ferritin, soluble transferrin receptor and 8-oxo-2'-deoxyguanosine were compared, as well as total iron-binding capacity (TIBC) and ceruloplasmin ferroxidase activity in two groups of subjects: Male COPD patients (54 subjects) and male COPD patients diagnosed with lung cancer (53 subjects). Statistically significant differences were identified between the two groups in transferrin and TNFα levels, as well as in TIBC; all three parameters were lower in the group consisting of COPD patients diagnosed with lung cancer (P<0.01). It was also revealed that HP genotype 1/2 was concomitant with low transferrin blood level in subjects with COPD; this apparent dependence was absent in the COPD + cancer subjects. The results indicate a role of iron metabolism in the susceptibility to lung cancer in COPD-affected subjects. They also emphasize the importance of individual capacity for an effective response to oxidative stress during the pathogenic process as HP is a plasma protein that binds free hemoglobin and its polymorphism results in proteins with altered hemoglobin-binding capacity and different antioxidant and iron-recycling functions.

Keywords: chronic obstructive pulmonary disease; haptoglobin polymorphism; iron metabolism proteins; lung cancer; oxidative stress.