Amputee perception of prosthetic ankle stiffness during locomotion

J Neuroeng Rehabil. 2018 Nov 8;15(1):99. doi: 10.1186/s12984-018-0432-5.

Abstract

Background: Prosthetic feet are spring-like, and their stiffness critically affects the wearer's stability, comfort, and energetic cost of walking. Despite the importance of stiffness in ambulation, the prescription process often entails testing a limited number of prostheses, which may result in patients receiving a foot with suboptimal mechanics. To understand the resolution with which prostheses should be individually optimized, we sought to characterize below-knee prosthesis users' psychophysical sensitivity to prosthesis stiffness.

Methods: We used a novel variable-stiffness ankle prosthesis to measure the repeatability of user-selected preferred stiffness, and implemented a psychophysical experiment to characterize the just noticeable difference of stiffness during locomotion.

Results: All eight subjects with below-knee amputation exhibited high repeatability in selecting their Preferred Stiffness (mean coefficient of variation: 14.2 ± 1.7%) and were able to correctly identify a 7.7 ± 1.3% change in ankle stiffness (with 75% accuracy).

Conclusions: This high sensitivity suggests prosthetic foot stiffness should be tuned with a high degree of precision on an individual basis. These results also highlight the need for a pairing of new robotic prescription tools and mechanical characterizations of prosthetic feet.

Keywords: Perception; Prosthetics; Stiffness; Variable-stiffness.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amputees*
  • Artificial Limbs*
  • Biomechanical Phenomena
  • Female
  • Humans
  • Male
  • Perception*
  • Prosthesis Design*