Extensions to Michaelis-Menten Kinetics for Single Parameters

Sci Rep. 2018 Nov 8;8(1):16586. doi: 10.1038/s41598-018-34675-2.

Abstract

Biochemical transformation kinetics is based on the formation of enzyme-substrate complexes. We developed a robust scheme based on unit productions of enzymes and reactants in cyclic events to comply with mass action law to form enzyme-substrate complexes. The developed formalism supports a successful application of Michaelis-Menten kinetics in all biochemical transformations of single parameters. It is an essential tool to overcome some challenging healthcare and environmental issues. In developing the formalism, we defined the substrate [S]= [Product]3/4 and rate of reaction based on rate and time perspectives. It allowed us to develop two quadratic equations. The first, represents a body entity that gave a useful relationship of enzyme E = 2S0.33, and the second nutrients/feed, each giving [Enzymes] and [Enzyme-substrate complexes], simulating rate of reaction, [substrate], and their differentials. By combining [Enzymes] and [Enzyme-substrate complexes] values, this quadratic equation derives a Michaelis-Menten hyperbolic function. Interestingly, we can derive the proportionate rate of reaction and [Enzymes] values of the quadratics resulting in another Michaelis-Menten hyperbolic. What is clear from these results is that between these two hyperbolic functions, in-competitive inhibitions exist, indicating metabolic activities and growth in terms of energy levels. We validated these biochemical transformations with examples applicable to day to day life.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms
  • Biochemical Phenomena
  • Enzymes / metabolism*
  • Kinetics
  • Models, Chemical

Substances

  • Enzymes