Modulation of human neuroblastoma transplanted into nude mice by endogenous opioid systems

Life Sci. 1987 Sep 21;41(12):1465-72. doi: 10.1016/0024-3205(87)90711-9.


The role of endogenous opioid systems (endogenous opioids and opioid receptors) in human cancer was explored using an opioid antagonist paradigm and neuroblastoma cells (SK-N-MC) transplanted into nude mice. Mice inoculated with 2.5 X 10(6) neuroblastoma cells received daily injections of either 0.1 or 10 mg/kg naltrexone (=0.1 and 10 NTX groups) which blocked the opioid receptor for 6-8 hr/day or the entire 24 hr/day, respectively, or sterile water. The latency for appearance of a measurable tumor (5 mm diameter) in the 0.1 NTX group was 27% longer than controls (11 days), and the first death in this group occurred 33% later than controls (day 27). Mice inoculated with tumor cells in the 10 NTX group had an acceleration (18%) in the latency of tumor appearance and, 2 weeks after cell inoculation, 70% of the mice in this group had tumors, in contrast to 10% of the controls. At the termination of the experiment (day 45), only 33% of the 10 NTX group were alive, in contrast to 90% of the controls. Receptor binding assays using DAGO, DADLE, or EKC revealed specific saturable binding only for DADLE and EKC. NTX administration resulted in a 148-186% increase in density for both binding sites, but no changes in binding affinity. Measures of opioid levels showed that tumor tissue levels of both beta-endorphin and methionine-enkephalin were elevated 2.5 to 6.5 fold from control values in both NTX groups, whereas plasma beta-endorphin was subnormal by 4 to 6 fold. These results indicate that endogenous opioid systems regulate human neuro-oncogenesis, with opioids being active inhibitors of growth. Opioid antagonists up-regulate receptors and increase tissue levels of endogenous opioids and, under conditions in which the opioid antagonist is short-acting (e.g., 0.1 NTX), can have an exaggerated antitumor effect during the interval when the antagonist is no longer present.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Endorphins / physiology*
  • Enkephalin, Leucine / analogs & derivatives
  • Enkephalin, Leucine / metabolism
  • Enkephalin, Leucine-2-Alanine
  • Humans
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Naltrexone / pharmacology
  • Neoplasm Transplantation
  • Neuroblastoma / etiology*
  • Receptors, Opioid / physiology*
  • Transplantation, Heterologous


  • Endorphins
  • Receptors, Opioid
  • Enkephalin, Leucine
  • Naltrexone
  • Enkephalin, Leucine-2-Alanine