Aging biomarkers are the qualitative and quantitative indicators of the aging processes of the human body. Estimation of biological age is important for assessing the physiological state of an organism. The advent of machine learning lead to the development of the many age predictors commonly referred to as the "aging clocks" varying in biological relevance, ease of use, cost, actionability, interpretability, and applications. Here we present and investigate a novel non-invasive class of visual photographic biomarkers of aging. We developed a simple and accurate predictor of chronological age using just the anonymized images of eye corners called the PhotoAgeClock. Deep neural networks were trained on 8414 anonymized high-resolution images of eye corners labeled with the correct chronological age. For people within the age range of 20 to 80 in a specific population, the model was able to achieve a mean absolute error of 2.3 years and 95% Pearson and Spearman correlation.
Keywords: age prediction; biomedical imaging; computer vision; deep learning; photographic aging biomarker; photographic aging clock.