Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2018 Nov 13;22(1):293.
doi: 10.1186/s13054-018-2234-3.

Cost-effectiveness of procalcitonin testing to guide antibiotic treatment duration in critically ill patients: results from a randomised controlled multicentre trial in the Netherlands

Affiliations
Randomized Controlled Trial

Cost-effectiveness of procalcitonin testing to guide antibiotic treatment duration in critically ill patients: results from a randomised controlled multicentre trial in the Netherlands

Michelle M A Kip et al. Crit Care. .

Abstract

Background: Procalcitonin (PCT) testing can help in safely reducing antibiotic treatment duration in intensive care patients with sepsis. However, the cost-effectiveness of such PCT guidance is not yet known.

Methods: A trial-based analysis was performed to estimate the cost-effectiveness of PCT guidance compared with standard of care (without PCT guidance). Patient-level data were used from the SAPS trial in which 1546 patients were randomised. This trial was performed in the Netherlands, which is a country with, on average, low antibiotic use and a short duration of hospital stay. As quality of life among sepsis survivors was not measured during the SAPS, this was derived from a Dutch follow-up study. Outcome measures were (1) incremental direct hospital cost and (2) incremental cost per quality-adjusted life year (QALY) gained from a healthcare perspective over a one-year time horizon. Uncertainty in outcomes was assessed with bootstrapping.

Results: Mean in-hospital costs were €46,081/patient in the PCT group compared with €46,146/patient with standard of care (i.e. - €65 (95% CI - €6314 to €6107); - 0.1%). The duration of the first course of antibiotic treatment was lower in the PCT group with 6.9 vs. 8.2 days (i.e. - 1.2 days (95% CI - 1.9 to - 0.4), - 14.8%). This was accompanied by lower in-hospital mortality of 21.8% vs. 29.8% (absolute decrease 7.9% (95% CI - 13.9% to - 1.8%), relative decrease 26.6%), resulting in an increase in mean QALYs/patient from 0.47 to 0.52 (i.e. + 0.05 (95% CI 0.00 to 0.10); + 10.1%). However, owing to high costs among sepsis survivors, healthcare costs over a one-year time horizon were €73,665/patient in the PCT group compared with €70,961/patient with standard of care (i.e. + €2704 (95% CI - €4495 to €10,005), + 3.8%), resulting in an incremental cost-effectiveness ratio of €57,402/QALY gained. Within this time frame, the probability of PCT guidance being cost-effective was 64% at a willingness-to-pay threshold of €80,000/QALY.

Conclusions: Although the impact of PCT guidance on total healthcare-related costs during the initial hospitalisation episode is likely negligible, the lower in-hospital mortality may lead to a non-significant increase in costs over a one-year time horizon. However, since uncertainty remains, it is recommended to investigate the long-term cost-effectiveness of PCT guidance, from a societal perspective, in different countries and settings.

Keywords: Cost-effectiveness; Intensive care; Procalcitonin; Sepsis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This is a secondary analysis of data from the SAPS trial, which was approved by the Ethics Committee of the VU University Medical Center Amsterdam, Netherlands, which is in full compliance with the Helsinki declaration.

Consent for publication

Not applicable.

Competing interests

DWL reports grants from Thermo Fisher during the conduct of the SAPS-trial from which data has been used for this study. All other authors declare no competing interests related to this manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Incremental cost-effectiveness plane for procalcitonin (PCT) guidance compared with standard of care for costs during the hospitalisation episode. This incremental cost-effectiveness plane shows the impact of the use of a PCT-guided antibiotic treatment algorithm, as compared to standard of care, on the difference in in-hospital mortality and accompanying costs within this (initial) hospitalisation episode. The result is based on 10,000 bootstrap samples
Fig. 2
Fig. 2
Incremental cost-effectiveness plane for procalcitonin (PCT) guidance compared with standard of care for costs until one year after ICU admission. This incremental cost-effectiveness plane shows the impact of the use of a PCT-guided antibiotic treatment algorithm, as compared to standard of care, on the difference in quality-adjusted life years (QALYs) (until one year after ICU admission) and accompanying healthcare-related costs within this one-year time period. In addition, the willingness-to-pay (WTP) thresholds of €20,000/QALY and €80,000/QALY are shown. The result is based on 10,000 bootstrap samples
Fig. 3
Fig. 3
Cost-effectiveness acceptability curve. This cost-effectiveness acceptability curve shows the probability that the use of PCT-guided antibiotic treatment is cost-effective compared to standard of care, for a willingness-to-pay threshold ranging from €0/quality-adjusted life year (QALY) to €200,000/QALY. This analysis incorporates all healthcare-related costs over a one-year time horizon

Similar articles

Cited by

References

    1. Becker KL, Snider R, Nylen ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med. 2008;36(3):941–952. doi: 10.1097/CCM.0B013E318165BABB. - DOI - PubMed
    1. Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177(5):498–505. doi: 10.1164/rccm.200708-1238OC. - DOI - PubMed
    1. Bouadma L, Luyt CE, Tubach F, Cracco C, Alvarez A, Schwebel C, et al. Use of procalcitonin to reduce patients' exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised controlled trial. Lancet. 2010;375(9713):463–474. doi: 10.1016/S0140-6736(09)61879-1. - DOI - PubMed
    1. Annane Djillali, Maxime Virginie, Faller Jean Pierre, Mezher Chaouki, Clec'h Christophe, Martel Patricia, Gonzales Hélène, Feissel Marc, Cohen Yves, Capellier Gilles, Gharbi Miloud, Nardi Olivier. Procalcitonin levels to guide antibiotic therapy in adults with non-microbiologically proven apparent severe sepsis: a randomised controlled trial. BMJ Open. 2013;3(2):e002186. doi: 10.1136/bmjopen-2012-002186. - DOI - PMC - PubMed
    1. Deliberato RO, Marra AR, Sanches PR, Martino MD, Ferreira CE, Pasternak J, et al. Clinical and economic impact of procalcitonin to shorten antimicrobial therapy in septic patients with proven bacterial infection in an intensive care setting. Diagn Microbiol Infect Dis. 2013;76(3):266–271. doi: 10.1016/j.diagmicrobio.2013.03.027. - DOI - PubMed

Publication types

MeSH terms