A Novel µECoG Electrode Interface for Comparison of Local and Common Averaged Referenced Signals

Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5057-5060. doi: 10.1109/EMBC.2018.8513432.


Micro-electrocorticography (µECoG) is a minimally invasive neural interface that allows for recording from the surface of the brain with high spatial and temporal resolution [1], [2]. However, discerning multi-unit and local field potential (LFP) activity with potentially highly-correlated signals across a dense µECoG array can be challenging. Here we describe a novel µECoG design to compare the effect of referencing recordings to a local reference electrode and common average referencing (CAR). The filtering effect and the significant increase in signal to noise ratio of the evoked response (ESNR) can be seen after re-referencing for both types of referencing. In a preliminary analysis, re-referencing the µECoG signals can increase recording performance at high contact densities in the auditory cortex. This also provides promising evidence for a versatile in-house fabricated µECoG electrode.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Brain
  • Brain Mapping*
  • Electrocorticography*
  • Electrodes, Implanted
  • Humans
  • Microelectrodes